INCH-POUND
MIL-M-38510/117C
11 August 2005
SUPERSEDING
MIL-M-38510/117B
10 February 2004

MILITARY SPECIFICATION MICROCIRCUITS, LINEAR, ADJUSTABLE, POSITIVE, VOLTAGE REGULATORS, MONOLITHIC SILICON

This specification is approved for use by all Departments and Agencies of the Department of Defense.

Reactivated for new design as of 10 February 2004. May be used for either new or existing design acquisition.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF-38535

1. SCOPE

- 1.1 <u>Scope</u>. This specification covers the detail requirements for three and four terminal monolithic silicon, adjustable, positive, voltage regulators. Two product assurance classes and a choice of case outlines and lead finish are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.4).
 - 1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535, and as specified herein.
 - 1.2.1 <u>Device types</u>. The device types are as shown in the following:

Device type	<u>Circuit</u>	Case outline letter
01	4-terminal voltage regulator,	Χ
	5 volts \leq V _O \leq 30 volts at 0.5 A	
02	4-terminal voltage regulator,	Υ
	5 volts \leq V _O \leq 30 volts at 1.5 A	
03	3-terminal voltage regulator,	X
	1.25 volts \leq V _O \leq 37 volts at 0.5 A	
04	3-terminal voltage regulator,	Υ
	1.25 volts \leq V _O \leq 37 volts at 1.5 A	
05	3-terminal voltage regulator,	Υ
	1.25 volts \leq V _O \leq 37 volts at 3.0 A	
06	3-terminal voltage regulator,	Υ
	1.25 volts \leq V _O \leq 37 volts at 5.0 A	

1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, 3990 East Broad St., Columbus, OH 43218-3990, or emailed to linear@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at http://assist.daps.dla.mil.

AMSC N/A FSC 5962

1.2.3 Case outlines. The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Device types	Package style
X	See figure 1	4	01	Can
Υ	See figure 2	4	02	Flange mount
Χ	See figure 3	3	03	Can
Υ	See figure 4	2	04,05,06	Flange mount

1.3 Absolute maximum ratings.

Input voltage (device types 01 and 02)	40 V
Input-output differential voltage	
(device types 03 and 04)	40 V
(device types 05 and 06)	35 V
Lead temperature (soldering, 60 seconds)	+300°C
Junction temperature (T _J)	+150°C <u>1</u> /
Storage temperature range	-65°C to +150°C

1.4 Recommended operating conditions.

Input voltage range:

Device types 01 and 02	8 V dc to 38 V dc
Device types 03 and 04	4.25 V dc to 41.25 V dc
Device types 05 and 06	4.25 V dc to 36.25 V dc
Ambient operating temperature range (T _A)	-55°C to +125°C

1.5 Power and thermal characteristics.

$T_A = T_S$	Case	Мах ӨЈА	Maximum P _D without heat sink	Max θ _{JC}	Maximum P _D with heat sink	Max θ _{C-S} <u>2</u> /
125°C <u>3</u> /	Х	140°C/W	0.18 W	40°C/W	0.5 W	10°C/W
	Υ	35°C/W	0.71 W	4°C/W <u>4</u> /	5.6 W <u>5</u> /	0.5°C/W
25°C <u>3</u> /	Х	140°C/W	0.89 W	40°C/W	2.50 W	10°C/W
	Υ	35°C/W	3.60 W	4°C/W <u>4</u> /	28.00 W <u>6</u> /	0.5°C/W
-55°C <u>3</u> /	Х	140°C/W	1.50 W	40°C/W	4.00 W	10°C/W
	Υ	35°C/W	5.80 W	4°C/W <u>4</u> /	45.00 W <u>6</u> /	0.5°C/W

^{1/} The device is protected by a thermal shutdown circuit which is designed to turn off the output transistor whenever the device junction temperature is in excess of 150°C.

^{2/} This value represents the maximum allowable thermal impedance of a heat sink to remain within the thermal ratings.

^{3/} Based on T_J = 150°C and specified values of θ_{JA} and θ_{JC} .

 $[\]underline{4}$ / Maximum θ_{JC} at all temperatures (for case Y only) = 1.5°C/W for device type 05 and 1.0°C/W for device type 06.

^{5/} Power dissipation (PD) at 125°C (for case Y only) = 12.5 W for device type 05 and 16.6 W for device type 06.

^{6/} Power dissipation (PD) at -55°C and +25°C (for case Y only) = 30 W for device type 05 and 50 W for device type 06.

2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this specification and the references cited herein, the text of this document shall take precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.3).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
- 3.3.1 <u>Block diagram and terminal connections</u>. The block diagrams and terminal connections shall be as specified on figures 5 through 8.
- 3.3.2 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity (DSCC-VA) upon request.
 - 3.3.3 Case outlines. The case outlines shall be as specified in 1.2.3 and on figures 1, 2, 3, and 4.

- 3.4 Lead material and finish. Lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full operating ambient temperature range of –55°C to +125°C.
- 3.5.1 <u>Stability</u>. If the device is located an appreciable distance from the power supply filter, a solid tantalum bypass capacitor should be connected as close to the device V_{CC} input as possible to suppress oscillation. A solid tantalum bypass capacitor is recommended on the device output. Since load currents of less than 5 milliamperes may result in a loss of voltage regulation, regulators should be preloaded with 5 milliamperes of load current in lightly loaded applications. In applications where fast rising high current pulses are present, additional output capacitance of 20 µF or more shall be used.
- 3.5.2 <u>Test limit</u>. The test limits specified in tables I and III apply only for the stated test conditions (example, 2 percent duty cycle), which essentially keep the junction temperature constant. In most applications the junction temperature will greatly exceed the 25°C ambient or sink temperature; thus devices may not perform within the 25°C specified limits.
- 3.6 <u>Electrical test requirements</u>. Electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.8 <u>Microcircuit group assignment</u>. The devices covered by this specification shall be in microcircuit group number 52 (see MIL-PRF-38535, appendix A).

 ${\sf TABLE\ I.\ } \underline{\sf Electrical\ performance\ characteristics}.$

Test	Symbol	Conditi -55°C ≤ T	Device type	Lir	mits	Unit	
		see figure	see figure 9 and 3.5 unless otherwise specified		Min	Max	
		Input voltage	Load current				
Output voltage	Vout	V _{IN} = 8 V	I _L = -5 mA, -500 mA	01	4.75	5.25	V
		V _{IN} = 30 V	I _L = -5 mA, -50 mA		4.75	5.25	
		V _{IN} = 38 V	I _L = -500 mA		28.5	31.5	
		V _{IN} = 10 V, T _A = 150°C	I _L = -5 mA		4.75	5.25	
Line regulation	V _{RLINE}	8 V ≤ V _{IN} ≤ 30 V	I _L = -50 mA	01	-150	150	mV
		8 V ≤ V _{IN} ≤ 25 V	I _L = -350 mA		-50	50	
Load regulation	V _R LOAD	V _{IN} = 10 V	-500 mA ≤ I _L ≤ -5 mA	01	-100	100	mV
		V _{IN} = 30 V	-50 mA ≤ I _L ≤ -5 mA		-150	150	
Thermal regulation	V _{RTH}	V _{IN} = 15 V, T _A = 25°C	I _L = -500 mA	01	-50	50	mV
Standby current drain	ISCD	V _{IN} = 10 V	I _L = -5 mA	01	-7.0	-0.5	mA
		V _{IN} = 30 V	I _L = -5 mA		-8.0	-0.5	
Standby current drain change versus line voltage	ΔI _{SCD} (LINE)	$8~V \leq V_{IN} \leq 30~V$	I _L = -5 mA	01	-1.0	1.0	mA
Standby current drain change versus load current	ΔI _{SCD} (LOAD)	V _{IN} = 10 V	-500 mA ≤ I _L ≤ -5 mA	01	-0.5	0.5	mA
Control pin current	ICTL	$V_{IN} = 10 \text{ V},$ $T_A = 25^{\circ}\text{C}$	I _L = -350 mA	01	-5.0	-0.01	μА
		V _{IN} = 10 V,	I _L = -350 mA		-8.0	-0.01	
		$-55^{\circ}C \le T_A \le 125^{\circ}C$					

 $\label{eq:table I.} \ \underline{\mbox{Electrical performance characteristics}} - \mbox{Continued}.$

	-33 C ≥ IA	s <u>1/ 2</u> / ≤ +125°C	Device type	Lin	nits	Unit
	see figure 9 unless otherwi			Min	Max	
	Input voltage	Load current				
I _{OS1}	V _{IN} = 10 V		01	-2.0	-0.50	A
I _{OS2}	V _{IN} = 30 V			-1.0	-0.01	
Vout	V _{IN} = 10 V, <u>3</u> /	$R_L = 10 \Omega$,	01	4.75	5.25	V
(RECOV)	after I _{OS1}	C _L = 20 μF				
	$V_{IN} = 30 \text{ V}, \qquad 3/$	$R_L = 1 k\Omega$		4.75	5.25	
	after I _{OS2}					
VSTART	V _{IN} = 8 V	$R_L = 10 \Omega$,	01	4.75	5.25	V
		C _L = 20 μF				
ΔV _{IN} /	V _{IN} = 10 V, <u>4</u> /	I _L = -125 mA,	01	45		dB
ΔV_{OUT}	e _i = 1 Vrms.	T _Δ = 25°C.				
	at f = 2400 Hz	see figure 11				
V _{NO}	V _{IN} = 10 V, 4/	I _L = -50 mA,	01		125	μVrms
	see figure 12	T _A = 25°C				
ΔV _{OUT} /	V _{IN} = 10 V, 5/	I _L = -5 mA,	01		30	mV/V
	_					
IIV		. A 20 0				
ΔV _{OUT} /	V _{IN} = 10 V, <u>5</u> /	I _L = -50 mA,	01		2.5	mV/mA
	see figure 14	_				
·· · L		_				
	IOS2 VOUT (RECOV) VSTART ΔVIN / ΔVOUT VNO ΔVOUT / ΔVIN		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input voltage Load current IoS1 VIN = 10 V 01 IoS2 VIN = 30 V Vout (RECOV) $VIN = 10 \text{ V}$, $3/2$ $IIN = 10 \text{ Q}$, $IIN = 10 \text{ Q}$, after $IIN = 10 \text{ Q}$, $IIN = 10 \text{ Q}$, $IIN = 10 \text{ Q}$, at $IIN = 10 \text{ Q}$, and $IIN = 10 \text{ Q}$, are figure $IIN = 10 \text{ Q}$, and $IIN = 10 \text{ Q}$, are figure $IIN = 10 \text{ Q}$, and $IIN = 10 \text{ Q}$, are figure $IIN = 10 \text{ Q}$, and $IIN = 10 \text{ Q}$, are figure $IIN = 10 \text{ Q}$, and $IIN = 10 \text{ Q}$, are figure $IIN = 10 \text{ Q}$, and $IIN = 10 \text{ Q}$, are figure $IIN = 10 \text{ Q}$, and $IIN = 10 \text{ Q}$, are figure $IIN = 10 \text{ Q}$, and $IIN = 10 \text{ Q}$, are figure $IIN = 10 \text{ Q}$, and $IIN = 10 \text{ Q}$, are figure $IIN = 10 \text{ Q}$, and $IIN = 10 \text{ Q}$, are figure $IIN = 10 \text{ Q}$, and $IIN = 10 \text{ Q}$, are figure $IIN = 10 \text{ Q}$. And $IIN = 10 \text{ Q}$, are figure $IIN = 10 \text{ Q}$, and $IIN = 10 \text{ Q}$, are figure $IIN = 10 \text{ Q}$.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $\label{eq:table I.} \ \underline{\mbox{Electrical performance characteristics}} - \mbox{Continued}.$

Test	Symbol	Conditi	Device type	Limits		Unit	
		see figure	-55°C ≤ T _A ≤ +125°C see figure 9 and 3.5 unless otherwise specified				Max
		Input voltage	Load current				
Output voltage	Vout	V _{IN} = 8 V	I _L = -5 mA, -1 A	02	4.75	5.25	V
		V _{IN} = 30 V	I _L = -5 mA, -100 mA		4.75	5.25	
		V _{IN} = 38 V	I _L = -1 A		28.5	31.5	
		V _{IN} = 10 V, T _A = 150°C	I _L = -5 mA		4.75	5.25	
Line regulation	V _{RLINE}	$8~V \leq V_{IN} \leq 30~V$	I _L = -100 mA	02	-150	150	mV
		8 V ≤ V _{IN} ≤ 25 V	I _L = -500 mA		-50	50	
Load regulation	V _R LOAD	V _{IN} = 10 V	-1 A ≤ I _L ≤ -5 mA	02	-100	100	mV
		V _{IN} = 30 V	-100 mA ≤ I _L ≤ -5 mA		-150	150	
Thermal regulation	V _{RTH}	V _{IN} = 15 V, T _A = 25°C	I _L = -1 A	02	-50	50	mV
Standby current drain	ISCD	V _{IN} = 10 V	I _L = -5 mA	02	-7.0	-0.5	mA
		V _{IN} = 30 V	I _L = -5 mA		-8.0	-0.5	
Standby current drain change versus line voltage	ΔI _{SCD} (LINE)	8 V ≤ V _{IN} ≤ 30 V	I _L = -5 mA	02	-1.0	1.0	mA
Standby current drain change versus load current	ΔI _{SCD} (LOAD)	V _{IN} = 10 V	-1 A ≤ I _L ≤ -5 mA	02	-0.5	0.5	mA
Control pin current	ICTL	V _{IN} = 10 V, T _A = 25°C	I _L = -500 mA	02	-5.0	-0.01	μА
		V _{IN} = 10 V,	I _L = -500 mA	-	-8.0	-0.01	-
		$-55^{\circ}C \le T_A \le 125^{\circ}C$					

 $\label{eq:table I.} \ \underline{\mbox{Electrical performance characteristics}} - \mbox{Continued}.$

Test	Symbol	Condition $-55^{\circ}C \leq T_{A}$:		Device type	Lin	nits	Unit
		see figure 9 unless otherwi			Min	Max	
		Input voltage	Load current				
Output short circuit current	los1	V _{IN} = 10 V		02	-4.0	-1.00	A
	I _{OS2}	V _{IN} = 30 V			-2.0	-0.02	
Output voltage recovery after output short	Vout	V _{IN} = 10 V, <u>3</u> /	$R_L = 5 \Omega$,	02	4.75	5.25	V
·	(RECOV)	after I _{OS1}	C _L = 20 μF	_			
circuit current		$V_{IN} = 30 \text{ V}, \qquad 3/$	$R_L = 5 \text{ k}\Omega$		4.75	5.25	
		after I _{OS2}					
Voltage start-up	VSTART	V _{IN} = 8 V	$R_L = 5 \Omega$,	02	4.75	5.25	V
			C _L = 20 μF				
Ripple rejection	ΔV _{IN} /	V _{IN} = 10 V, <u>4</u> /	I _L = -350 mA,	02	45		dB
	ΔV_{OUT}	e _i = 1 Vrms,	T _A = 25°C,				
		at f = 2400 Hz	see figure 11				
Output noise voltage	V _{NO}	V _{IN} = 10 V, 4/	I _L = -100 mA,	02		250	μVrms
		see figure 12	T _A = 25°C				
Line transient response	ΔV _{OUT} /	V _{IN} = 10 V, <u>5</u> /	I _L = -5 mA,	02		30	mV/V
	ΔVIN	$\Delta V_{IN} = 3.0 \text{ V},$	T _A = 25°C				
	- 114	see figure 13					
Load transient response	ΔV _{OUT} /	V _{IN} = 10 V, <u>5</u> /	IL = -100 mA,	02		2.5	mV/mA
	ΔΙ	see figure 14	$\Delta I_1 = -400 \text{ mA}$				
			T _A = 25°C				

 $\label{eq:table I.} \ \underline{\text{Electrical performance characteristics}} - \text{Continued}.$

Test	Symbol	Conditions $\underline{1}/\underline{2}/$ -55°C \leq T _A \leq +125°C		Device type	Lim	nits	Unit
		see figure unless otherw			Min	Max	
		Input voltage	Load current				
Output voltage	Vout	V _{IN} = 4.25 V	I _L = -5 mA, -500 mA	03	1.20	1.30	V
		V _{IN} = 41.25 V	I _L = -5 mA, -50 mA		1.20	1.30	
		V _{IN} = 6.25 V,	I _L = -5 mA		1.20	1.30	
		T _A = 150°C					
Line regulation	V _{RLINE}	$4.25 \text{ V} \le \text{V}_{\text{IN}} \le 41.25 \text{ V},$ $T_{\text{A}} = 25^{\circ}\text{C}$	I _L = -5 mA	03	-9	9	mV
		$4.25 \text{ V} \le \text{V}_{IN} \le 41.25 \text{ V},$	I _L = -5 mA		-23	23	
		-55°C ≤ T _A ≤ 125°C					
Load regulation	V _{RLOAD}	V _{IN} = 6.25 V,	-500 mA ≤ I _L ≤ -5 mA	03	-12	12	mV
		T _A = 25°C					
		V _{IN} = 6.25 V,	-500 mA ≤ I _L ≤ -5 mA		-12	12	
		$-55^{\circ}C \le T_A \le 125^{\circ}C$					
		V _{IN} = 41.25 V,	-500 mA ≤ I _L ≤ -5 mA		-12	12	
		T _A = 25°C					
		V _{IN} = 41.25 V,	-500 mA ≤ I _L ≤ -5 mA		-12	12	
		-55°C ≤ T _A ≤ 125°C					
Thermal regulation	VRTH	V _{IN} = 14.6 V,	I _L = -500 mA	03	-12	12	mV
		T _A = 25°C					
Adjust pin current	I _{ADJ}	V _{IN} = 4.25 V	I _L = -5 mA	03	-100	-15	μА
		V _{IN} = 41.25 V	I _L = -5 mA		-100	-15	
Adjust pin current change versus	Δl _{AD} J	4.25 V ≤ V _{IN} ≤ 41.25 V	I _L = -5 mA	03	-5	5	μА
line voltage	(LINE)						

TABLE I. <u>Electrical performance characteristics</u> – Continued.

Test	Symbol	Conditions $\underline{1}/\underline{2}/$ $-55^{\circ}C \le T_{A} \le +125^{\circ}C$ see figure 9 and 3.5 unless otherwise specified		Device type	Lir	nits	Unit
					Min	Max	
		Input voltage	Load current				
Adjust pin current change versus load current	ΔI _{ADJ} (LOAD)	V _{IN} = 6.25 V	-500 mA \leq I _L \leq -5 mA	03	-5	5	μА
Minimum load current	IQ	$4.25 \text{ V} \leq \text{V}_{\text{IN}} \leq 14.25 \text{ V},$ forced $\text{V}_{\text{OUT}} = 1.4 \text{ V}$		03	-3.00	-0.05	mA
		V _{IN} = 41.25 V forced V _{OUT} = 1.4 V			-5.00	-0.2	
Output short circuit current	l _{OS1}	V _{IN} = 4.25 V		03	-1.8	-0.50	А
	I _{OS2}	V _{IN} = 40 V			-0.50	-0.05	
Output voltage recovery after	V _{OUT} (RECOV)	V _{IN} = 4.25 V, <u>3</u> / after I _{OS1}	$R_L = 2.5 \Omega$, $C_L = 20 \mu F$	03	1.20	1.30	V
output short circuit current		$V_{IN} = 40 \text{ V}, \qquad \underline{3}/$ after I_{OS2}	$R_L = 250 \Omega$		1.20	1.30	-
Voltage start-up	VSTART	V _{IN} = 4.25 V	$R_L = 2.5 \Omega$, $C_L = 20 \mu F$	03	1.20	1.30	V
Ripple rejection	ΔV _{IN} / ΔV _{OUT}	$V_{IN} = 6.25 \text{ V}, \qquad \underline{4}/$ $e_i = 1 \text{ Vrms},$ at f = 2400 Hz	$I_L = -125 \text{ mA},$ $T_A = 25^{\circ}\text{C},$ see figure 11	03	65		dB
Output noise voltage	V _{NO}	V _{IN} = 6.25 V, <u>4</u> / see figure 12	I _L = -50 mA, T _A = 25°C	03		120	μVrms
Line transient response	ΔV _{OUT} / ΔV _{IN}	$V_{IN} = 6.25 \text{ V}, \underline{5}/$ $\Delta V_{IN} = 3.0 \text{ V},$ see figure 13	I _L = -10 mA, T _A = 25°C	03		6	mV/V
Load transient response	ΔV _{OUT} / ΔI _L	V _{IN} = 6.25 V, <u>5</u> / see figure 14	I_L = -50 mA, ΔI_L = -200 mA T_A = 25°C	03		0.60	mV/mA

 ${\sf TABLE\ I.\ } \underline{\sf Electrical\ performance\ characteristics} - Continued.$

Test	Symbol	Conditions -55°C ≤ T _A ≤	Device type	Lin	nits	Unit	
		see figure 9 unless otherwis			Min	Max	
		Input voltage	Load current				
Output voltage	Vout	V _{IN} = 4.25 V	I _L = -5 mA, -1.5 A	04	1.20	1.30	V
		V _{IN} = 41.25 V	I _L = -5 mA, -200 mA		1.20	1.30	
		V _{IN} = 6.25 V,	I _L = -5 mA		1.20	1.30	
		T _A = 150°C					
Line regulation	V _{RLINE}	$4.25 \text{ V} \le \text{V}_{IN} \le 41.25 \text{ V},$	I _L = -5 mA	04	-9	9	mV
		T _A = 25°C					
		$4.25 \text{ V} \le V_{IN} \le 41.25 \text{ V},$	I _L = -5 mA		-23	23	
		$-55^{\circ}C \le T_A \le 125^{\circ}C$					
Load regulation	V _{RLOAD}	V _{IN} = 6.25 V,	-1.5 A ≤ I _L ≤ -5 mA	04	-3.5	3.5	mV
		T _A = 25°C					
		V _{IN} = 6.25 V,	-1.5 A ≤ I _L ≤ -5 mA		-12	12	
		$-55^{\circ}C \le T_A \le 125^{\circ}C$					
		V _{IN} = 41.25 V,	-200 mA ≤ I _L ≤ -5		-3.5	3.5	
		T _A = 25°C	mA				
		V _{IN} = 41.25 V,	-200 mA ≤ I _L ≤ -5		-12	12	
		$-55^{\circ}C \le T_A \le 125^{\circ}C$	mA				

 $\label{eq:table I.} \ \underline{\text{Electrical performance characteristics}} - \text{Continued}.$

Test	Symbol	Conditions -55°C ≤ T _A ≤		Device type	Limits		Unit	
		see figure 9 unless otherwis			Min	Max		
		Input voltage	Load current					
Thermal regulation	V _{RTH}	$V_{IN} = 14.6 \text{ V},$ $T_A = 25^{\circ}\text{C}$	I _L = -1.5 A	04	-12	12	mV	
Adjust pin current	I _{ADJ}	V _{IN} = 4.25 V			-100	-15	μА	
		V _{IN} = 41.25 V	I _L = -5 mA		-100	-15		
Adjust pin current change versus line voltage	ΔI _{AD} J (LINE)	$4.25 \text{ V} \le \text{V}_{\text{IN}} \le 41.25 \text{ V}$ $I_{\text{L}} = -5 \text{ mA}$		04	-5	5	μА	
Adjust pin current change versus load current	ΔI _{ADJ} (LOAD)	$V_{IN} = 6.25 \text{ V}$ $-1.5 \text{ A} \leq I_L \leq -5 \text{ mA}$		04	-5	5	μА	
Minimum load current	IQ	$4.25 \text{ V} \le \text{V}_{\text{IN}} \le 14.25 \text{ V},$ forced $\text{V}_{\text{OUT}} = 1.4 \text{ V}$		04	-3.00	-0.05	mA	
		V _{IN} = 41.25 V forced V _{OUT} = 1.4 V			-5.00	-0.2		
Output short circuit current	l _{OS1}	V _{IN} = 4.25 V		04	-3.50	-1.50	А	
	I _{OS2}	V _{IN} = 40 V			-1.00	-0.18		
Output voltage recovery after output short circuit	V _{OUT} (RECOV)	$V_{IN} = 4.25 \text{ V}, \qquad \underline{3}/$ after I_{OS1}	R_L = 0.833 $Ω$, C_L = 20 $μ$ F	04	1.20	1.30	V	
current		V _{IN} = 40 V, <u>3/</u> after I _{OS2}	R _L = 250 Ω		1.20	1.30		
Voltage start-up	VSTART	$V_{IN} = 4.25 \text{ V}$ $R_L = 0.833 \Omega$,		04	1.20	1.30	V	
Ripple rejection	ΔV _{IN} / ΔV _{OUT}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		04	65		dB	

 ${\sf TABLE\ I.\ } \underline{\sf Electrical\ performance\ characteristics} - Continued.$

Test	Symbol	Conditio -55°C ≤ TA		Device type	Lir	nits	Unit
		see figure unless otherw	9 and 3.5		Min	Max	
		Input voltage	Load current				
Output noise voltage	V _{NO}	V _{IN} = 6.25 V, <u>4/</u> see figure 12	$I_L = -100 \text{ mA},$ $T_A = 25^{\circ}\text{C}$	04		120	μVrms
Line transient response	ΔV _{OUT} / ΔV _{IN}	$V_{IN} = 6.25 \text{ V}, \underline{5}/$ $\Delta V_{IN} = 3.0 \text{ V},$	$= 6.25 \text{ V}, 5/$ $N = 3.0 \text{ V},$ $T_A = 25^{\circ}\text{C}$			6	mV/V
Load transient response	ΔV _{OUT} /	V _{IN} = 6.25 V, <u>5/</u> see figure 14	$I_{L} = -100 \text{ mA},$ $\Delta I_{L} = -400 \text{ mA}$ $T_{A} = 25^{\circ}\text{C}$	04		0.30	mV/mA
For device type 05, se	e figure 10		, and the second			<u> </u>	
Output voltage	Vout	V _{IN} = 4.25 V	I _L = -5 mA, -3.0 A	05	1.20	1.30	V
		V _{IN} = 36.25 V	I _L = -5 mA, -150 mA		1.20	1.30	
		$V_{IN} = 6.25 \text{ V},$ $T_A = 150^{\circ}\text{C}$	I _L = -5 mA		1.20	1.30	
Line regulation	V _{RLINE}	$4.25 \text{ V} \le \text{V}_{\text{IN}} \le 36.25 \text{ V},$ $T_{\text{A}} = 25^{\circ}\text{C}$	I _L = -5 mA	05	-4	4	mV
		$4.25 \text{ V} \le \text{V}_{\text{IN}} \le 36.25 \text{ V},$ $-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125^{\circ}\text{C}$	I _L = -5 mA		-20	20	
Load regulation	V _{RLOAD}	$V_{IN} = 6.25 \text{ V},$ $T_A = 25^{\circ}\text{C}$	-3.0 A ≤ I _L ≤ -5 mA	05	-3.5	3.5	mV
		V _{IN} = 6.25 V,	-3.0 A ≤ I _L ≤ -5 mA		-12	12	
		$-55^{\circ}\text{C} \le \text{T}_{A} \le 125^{\circ}\text{C}$ $V_{\text{IN}} = 36.25 \text{ V},$ $T_{A} = 25^{\circ}\text{C}$	-150 mA ≤ I _L ≤ -5 mA	-	-3.5	3.5	
		$T_A = 25^{\circ}C$ $V_{IN} = 36.25 \text{ V},$ $-55^{\circ}C \le T_A \le 125^{\circ}C$	-150 mA ≤ I _L ≤ -5 mA	-	-12	12	-

Test	Symbol	Conditions -55°C ≤ T _A ≤		Device type	Limits		Unit
		see figure 10 unless otherwis			Min	Max	
		Input voltage	Load current				
Thermal regulation	V _{RTH}	V _{IN} = 11.25 V,	I _L = -1.0 A	05	-5	5	mV
Adjust pin current	I _{ADJ}	V _{IN} = 4.25 V	T _A = 25°C V _{IN} = 4.25 V I _L = -5 mA		-100	-15	μΑ
		V _{IN} = 36.25 V	I _L = -5 mA	-	-100	-15	
Adjust pin current change versus line voltage	ΔΙ _{ΑΟ} J (LINE)	4.25 V ≤ V _{IN} ≤ 36.25 V I _L = -5 mA		05	-5	5	μА
Adjust pin current change versus load current	ΔI _{AD} J (LOAD)	$V_{IN} = 6.25 \text{ V}$ $-3.0 \text{ A} \le I_L \le -5 \text{ mA}$		05	-5	5	μА
Minimum load current	IQ	$4.25 \text{ V} \le \text{V}_{\text{IN}} \le 14.25 \text{ V},$ forced $\text{V}_{\text{OUT}} = 1.4 \text{ V}$		05	-3.00	-0.05	mA
		V _{IN} = 36.25 V forced V _{OUT} = 1.4 V			-5.00	-0.2	
Output short circuit current	l _{OS1}	V _{IN} = 4.25 V		05	-5.2	-3.0	А
	I _{OS2}	V _{IN} = 35 V			-2.0	-0.15	
Output voltage recovery after output short circuit	V _{OUT} (RECOV)	V _{IN} = 4.25 V, <u>3</u> / after I _{OS1}	R_L = 0.416 Ω, C_L = 20 μF	05	1.20	1.30	V
current		V _{IN} = 35 V, <u>3/</u> after I _{OS2}	R _L = 250 Ω		1.20	1.30	
Voltage start-up	VSTART	V _{IN} = 4.25 V	$V_{IN} = 4.25 \text{ V}$ $R_L = 0.416 \Omega$,		1.20	1.30	V
Ripple rejection	ΔV _{IN} / ΔV _{OUT}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		05	65		dB

 $\label{eq:table I.} \ \underline{\text{Electrical performance characteristics}} - \text{Continued}.$

Test	Symbol	Conditior -55°C ≤ T _A		Device type	Limits		Unit
		see figure 1 unless otherw			Min	Max	
		Input voltage	Load current				
Output noise voltage	V _{NO}	V _{IN} = 6.25 V, <u>4/</u> see figure 12	$I_L = -100 \text{ mA},$ $T_A = 25^{\circ}\text{C}$	05		120	μVrms
Line transient response	ΔV _{OUT} / ΔV _{IN}	$V_{\text{IN}} = 6.25 \text{ V}, \underline{5}/$		05		12	mV/V
Load transient response	ΔV _{OUT} /	rece figure 13 $I_L = -100 \text{ mA}$, see figure 14 $\Delta I_L = -400 \text{ mA}$ $T_A = 25^{\circ}\text{C}$		05		0.30	mV/mA
Output voltage	Vout	V _{IN} = 4.25 V	I _L = -5 mA, -5.0 A	06	1.19	1.29	V
		V _{IN} = 36.25 V	I _L = -5 mA, -150 mA		1.19	1.29	
		VIN = 6.25 V	I _L = -7.0 A		1.19	1.29	_
		V _{IN} = 6.25 V, T _A = 150°C	I _L = -5 mA		1.19	1.29	
Line regulation	VRLINE	$4.25 \text{ V} \le \text{V}_{\text{IN}} \le 36.25 \text{ V},$ $T_{\text{A}} = 25^{\circ}\text{C}$	I _L = -5 mA	06	-4	4	mV
		$4.25 \text{ V} \le \text{V}_{\text{IN}} \le 36.25 \text{ V},$ $-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125^{\circ}\text{C}$	I _L = -5 mA		-17	17	
Load regulation	VRLOAD	$V_{IN} = 6.25 \text{ V},$ $T_A = 25^{\circ}\text{C}$	-5.0 A ≤ I _L ≤ -5 mA	06	-3.8	3.8	mV
		$V_{IN} = 6.25 \text{ V},$ -55°C \le T_A \le 125°C	-5.0 A ≤ I _L ≤ -5 mA		-8	8	
		$V_{IN} = 36.25 \text{ V},$ $T_A = 25^{\circ}\text{C}$	-150 mA ≤ I _L ≤ -5 mA		-3.8	3.8	
		$V_{IN} = 36.25 \text{ V},$ -55°C \le T_A \le 125°C	-150 mA ≤ I _L ≤ -5 mA		-8	8	-

Test	Symbol	Condition -55°C ≤ T _A		Device type	Lin	nits	Unit
		see figure 1 unless otherwi	0 and 3.5		Min	Max	
		Input voltage	Load current				
Thermal regulation	V _{RTH}	V _{IN} = 11.25 V, T _A = 25°C	I _L = -1.0 A	06	-2	2	mV
Adjust pin current	I _{ADJ}	V _{IN} = 4.25 V	I _L = -5 mA	06	-100	-15	μА
		V _{IN} = 36.25 V	I _L = -5 mA		-100	-15	
Adjust pin current change versus line voltage	ΔI _{ADJ} (LINE)	$1.25 \text{ V} \le \text{V}_{\text{IN}} \le 36.25 \text{ V}$ $I_{\text{L}} = -5 \text{ mA}$		06	-5	5	μА
Adjust pin current change versus load current	ΔI _{ADJ} (LOAD)	$V_{IN} = 6.25 \text{ V}$ $-5.0 \text{ A} \le I_L \le -5 \text{ mA}$		06	-5	5	μА
Minimum load current	IQ	$4.25 \text{ V} \leq \text{V}_{\text{IN}} \leq 14.25 \text{ V},$ forced $\text{V}_{\text{OUT}} = 1.4 \text{ V}$		06	-3.00	-0.05	mA
		V _{IN} = 36.25 V forced V _{OUT} = 1.4 V			-5.00	-0.2	
Output short circuit current	l _{OS1}	$V_{IN} = 4.25 \text{ V}, t = 0.1 \text{ ms}$		06	-16.0	-7.0	A
	I _{OS2}	V _{IN} = 4.25 V, t = 0.5 ms			-16.0	-7.0	
	los3	V _{IN} = 4.25 V, t = 5.0 ms			-15.0	-5.0	
	I _{OS4}	V _{IN} = 35 V, t = 10 ms			-3.0	-0.20	
Output voltage recovery after output short circuit	V _{OUT} (RECOV)	V _{IN} = 4.25 V, <u>3/</u> after I _{OS3}	$R_L = 0.25 \Omega$, $C_L = 20 \mu F$	06	1.19	1.29	V
current		V _{IN} = 35 V, <u>3</u> / after I _{OS4}	R _L = 250 Ω		1.19	1.29	
Voltage start-up	VSTART	V _{IN} = 4.25 V	$R_L = 0.25 \Omega$, $C_L = 20 \mu F$	06	1.19	1.29	V

TABLE I. <u>Electrical performance characteristics</u> – Continued.

Test	Symbol	Conditions <u>1</u> / <u>2</u> / -55°C ≤ T _A ≤ +125°C		Device type	Limits		Unit
		see figure 1 unless otherw			Min	Max	
		Input voltage	Load current				
Ripple rejection	ΔV _{IN} /	$V_{IN} = 6.25 \text{ V}, \qquad \underline{4}/$	I _L = -500 mA,	06	65		dB
	ΔVουτ	e _i = 1 Vrms, at f = 2400 Hz	T _A = 25°C, see figure 11				
Output noise voltage	V _{NO}	V _{IN} = 6.25 V, <u>4/</u> see figure 12	$I_L = -100 \text{ mA},$ $T_A = 25^{\circ}\text{C}$	06		120	μVrms
Line transient	ΔV _{OUT} /	V _{IN} = 6.25 V, <u>5</u> /	I _L = -10 mA,	06		12	mV/V
response	ΔV _{IN}	$\Delta V_{IN} = 3.0 \text{ V},$ see figure 13	T _A = 25°C				
Load transient response	ΔV _{OUT} /	V _{IN} = 6.25 V, <u>5/</u> see figure 14	$I_L = -100 \text{ mA},$ $\Delta I_L = -400 \text{ mA}$	06		0.30	mV/mA
	_		T _A = 25°C				

- $\underline{1}$ / All tests performed at T_A = 125°C may at the manufacturer's option, be performed at T_A = 150°C. Specifications for T_A = 125°C shall then apply at T_A = 150°C.
- Static tests with load currents greater than 5 mA are performed under pulsed conditions defined on figures 9 or 10 as applicable.
- 3/ Output voltage recovery test shall be performed, with the designated load conditions, immediately after removal of each Ios test forced output voltage condition.
- 4/ The meter for e_i and e₀ shall have a minimum bandwidth from 10 Hz to 10 kHz and shall measure true rms voltages.
- 5/ The oscilloscope shall have a bandwidth between 5 and 15 MHz.

4. VERIFICATION.

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures should be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form. fit, or function as described herein.
- 4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
 - a. For class S and B devices, an additional burn-in screen shall be performed to test the operation of the thermal shutdown circuit. This screen shall be performed after serialization (3.1.8 of method 5004 of MIL-STD-883) and before interim electrical parameters (pre burn-in, 3.1.9 of method 5004 of MIL-STD-883). The requirements of 3.2.3 of method 1015 of MIL-STD-883 shall apply to this screen except the devices need not be tested in an oven.
 - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
 - c. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - d. Reverse bias burn-in shall not be performed.
 - e. Additional screening for space level product shall be as specified in MIL-PRF-38535.
 - f. Constant acceleration (method 2001 of MIL-STD-883); test condition B shall be used for case Y.
 - 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
 - 4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5, 6, 8, 9, 10, and 11 shall be omitted.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535 and as follows:
 - a. When using the method 5005 option, end point electrical parameters shall be as specified in table II herein.
 - When using the method 5005 option, constant acceleration for class S (method 2001 of MIL-STD-883); test condition B shall be used for case Y.

TABLE II. Electrical test requirements.

MIL-PRF-38535 test requirements	Subgroups (see table III)		
	Class S devices	Class B devices	
Interim electrical parameters	1	1	
Final electrical test parameters 1/	1,2,3,4	1,2,3,4	
Group A test requirements	1,2,3,4,7	1,2,3,4,7	
Group B electrical test parameters when using the method 5005 QCI option	1,2,3, and table IV delta limits	N/A	
Group C electrical parameters	1,2,3, and table IV delta limits	1 and table IV delta limits	
Group D end point electrical parameters	1,2,3	1	

- 1/ PDA applies to subgroup 1.
- 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End point electrical parameters shall be as specified in table II herein. Delta limits shall apply to group C inspection for classes B and S devices.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- 4.4.4 Group D inspection. Group D inspection shall be in accordance with table V of MIL-PRF-38535 and as follows:
 - a. End point electrical parameters shall be as specified in table II herein.
 - b. Constant acceleration (method 2001 of MIL-STD-883); test condition B shall be used for case Y.
- 4.5 Methods of inspection. Methods of inspection shall be as specified and as follows.
- 4.5.1 <u>Voltage and current</u>. All voltage values given are referenced to the designated return sense line. Currents given are conventional current and positive when flowing into the referenced terminal.

Dimensions						
Symbol	Inc	hes	Millim	neters	Notes	
	Min	Max	Min	Max		
Α	.240	.260	6.10	6.60		
φb	.016	.019	.41	.48	3	
φb ₁	.016	.021	.41	.53	3	
φD	.335	.370	8.51	9.40		
φD ₁	.305	.335	7.79	8.51		
е	.200	T.P.	5.08	T.P	5	
e ₁	.100	T.P.	2.54	T.P	5	
F		.050		1.27		
k	.028	.034	.71	.86		
k ₁	.029	.045	.74	1.14	4	
k ₂	.009	.041	.23	1.04		
L	.500		12.70			
L ₁		.050		1.27		
L ₂	.250		6.35			
α	45°	T.P	45°	T.P	5	

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only and are based upon 1.00 inch = 25.4 mm.
- 3. (Four leads) ϕb applies between L_1 and L_2 . ϕb_1 applies between L_2 and .500 (12.70 mm) from the reference plane.
 - Diameter is uncontrolled in L₁ and beyond .500 (12.70 mm) from the reference plane.
- 4. Four leads.
- 5. Measured from the maximum diameter of the product.
- 6. Leads having a maximum diameter .019 (.48 mm) measured in gaging plane .054 (1.37 mm) + .001 (.03 mm) .000 (.00 mm) below the base plane of the product shall be within .007 (.18 mm) of their true position relative to a maximum width tab.
- 7. The product may be measured by direct methods or by gage.

FIGURE 1. Case outline X (device type 01).

	Dimensions						
Symbol	Inc	hes	Millim	neters	Notes		
,	Min	Max	Min	Max			
Α	.250	.450	6.35	11.43			
A ₁	1.177	1.197	29.90	30.40			
A ₂	1.480	1.500	37.59	38.10			
φb	.038	.043	.97	1.09	3,7		
φD		.875		22.22			
е	.655	.675	16.64	17.14			
e ₁	.420	.440	10.67	11.18			
e ₂	.205	.225	5.21	5.72			
F	.060	.135	1.52	3.43			
φН	.151	.161	3.84	4.09	5,6		
L	.312	.500	7.92	12.70	4		
L ₁		.050		1.27	3,5		
R	.495	.525	12.57	13.34			
R ₁	.131	.188	3.33	4.78			
R ₂	.470	T.P.	11.94	T.P.			
θ1	54°	T.P.	54°	T.P.			
θ_2	18°	T.P.	18°	T.P.			

FIGURE 2. Case outline Y (device type 02).

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only and are based upon 1.00 inch = 25.4 mm.
- (Four leads) φb applies between L₁ and .500 (12.70 mm) from the seating plane.
 Diameter is uncontrolled in L₁ and beyond .500 (12.70 mm) from the seating plane.
- 4. Four leads.
- 5. Two holes.
- 6. Two holes located at true position within diameter .010 (.25 mm).
- 7. Leads having a maximum diameter .043 (1.09 mm) measured in gaging plane .054 (1.37 mm) + .001 (.03 mm) .000 (.00 mm) below the seating plane shall be located at true position within diameter .014 (.36 mm).
- 8. The mounting surface of the header shall be flat to convex within .003 (.08 mm) inside a .930 (23.62 mm) diameter circle on the center of the header and flat to convex within .006 (.15 mm) overall.

	Dimensions						
Symbol	Inc	hes	Millim	neters	Notes		
	Min	Max	Min	Max			
Α	.165	.185	4.19	4.70			
φb	.016	.019	.41	.48	3		
φb ₁	.016	.021	.41	.53	3		
φD	.335	.370	8.51	9.40			
φD ₁	.305	.335	7.75	8.51			
е	.200	T.P.	5.08	T.P	5		
e ₁	.100	T.P.	2.54	T.P	5		
F		.050		1.27			
k	.028	.034	.71	.86			
k ₁	.029	.045	.74	1.14	4		
k ₂	.009	.041	.23	1.04			
L	.500		12.70				
L ₁		.050		1.27			
L ₂	.250		6.35				
α	45°	T.P	45°	T.P	5		

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only and are based upon 1.00 inch = 25.4 mm.
- (Three leads) φb applies between L₁ and L₂. φb₁ applies between L₂ and .500 (12.70 mm) from the reference plane.
 - Diameter is uncontrolled in L₁ and beyond .500 (12.70 mm) from the reference plane.
- 4. Three leads.
- 5. Measured from the maximum diameter of the product.
- 6. Leads having a maximum diameter .019 (.48 mm) measured in gaging plane .054 (1.37 mm) + .001 (.03 mm) .000 (.00 mm) below the base plane of the product shall be within .007 (.18 mm) of their true position relative to a maximum width tab.
- 7. The product may be measured by direct methods or by gage.

FIGURE 3. Case outline X (device type 03).

	Dimensions						
Symbol	Inc	hes	Millim	neters	Notes		
	Min	Max	Min	Max			
Α	.250	.450	6.35	11.43			
A ₁	1.177	1.197	29.90	30.40			
φb	.038	.043	.97	1.09	3,7		
φD		.875		22.22			
е	.655	.675	16.64	17.14			
e ₁	.420	.440	10.67	11.18			
e ₂	.205	.225	5.21	5.72			
F	.060	.135	1.52	3.43			
φН	.151	.161	3.84	4.09	5,6		
L	.312	.500	7.92	12.70	4		
L ₁		.050		1.27	3,5		
R	.495	.525	12.57	13.34			
R ₁	.131	.188	3.33	4.78			

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only and are based upon 1.00 inch = 25.4 mm.
- (Two leads) φb applies between L₁ and .500 (12.70 mm) from the seating plane.
 Diameter is uncontrolled in L₁ and beyond .500 (12.70 mm) from the seating plane.
- 4. Two leads.
- 5. Two holes.
- 6. Two holes located at true position within diameter .010 (.25 mm).
- 7. Leads having a maximum diameter .043 (1.09 mm) measured in gaging plane .054 (1.37 mm) + .001 (.03 mm) .000 (.00 mm) below the seating plane shall be located at true position within diameter .014 (.36 mm).
- 8. The mounting surface of the header shall be flat to convex within .003 (.08 mm) inside a .930 (23.62 mm) diameter circle on the center of the header and flat to convex within .006 (.15 mm) overall.

FIGURE 4. Case outline Y (device types 04, 05, and 06).

Note: Case is connected to common.

FIGURE 5. Terminal connections for device types 01 and 02.

- 1. $V_{OUT} = [((R_1 + R_2) / R_2) \times (V_{CONTROL}) + |I_{CONTROL}| \times R_1]$ volts.
- 2. VCONTROL = 5.00 V (nominal).
- 3. $R_2 = 1.0 \text{ k}\Omega$ provides a minimum of |5 mA| load to the regulator at any V_{OUT} .

FIGURE 6. Block diagram for device types 01 and 02.

NOTE: Case is connected to output.

FIGURE 7. Terminal connections for 03, 04, 05, and 06.

- 1. $V_{OUT} = [((R_1 + R_2) / R_1) \times (1.25) + |I_{ADJ}| \times R_2] \text{ volts.}$
- 2. $R_1 = 250 \Omega$ provides a minimum of | 5 mA | load to the regulator at any V_{OUT} .

FIGURE 8. Block diagram for device types 03, 04, 05, and 06.

Device table							
Device type	01	02	03	04			
R ₁	0 Ω	0 Ω	249 Ω	249 Ω			
R ₂	1 kΩ	1 kΩ	0 Ω	0 Ω			
RL	10 Ω	5 Ω	2.5 Ω	0.833 Ω			
Ci	0.33 μF	0.33 μF	1.0 μF	1.0 μF			
CL	0.1 μF	0.1 μF	1.0 μF	1.0 μF			

FIGURE 9. Test circuit for static tests for device types 01, 02, 03, and 04.

LINE REGULATION WAVEFORMS

LOAD REGULATION WAVEFORMS

FIGURE 9. <u>Test circuit for static tests for device types 01, 02, 03, and 04</u> – Continued.

WAVEFORMS FOR VOLTAGE START-UP, OUTPUT SHORT CIRCUIT CURRENT, AND OUTPUT VOLTAGE RECOVERY - V S1 = 0 VOLTS V_{S1} SEE TABLE III - V S1 = -V IN/IO • V F2 = 15 VOLTS V_{F2} F2 = 0 VOLTS STROBE — SEE NOTE 10 **-**10 ms-25 ms V_{RECOVERY} V_{START}-V OUT = NOMINAL SEE TABLE III OUTPUT VOLTAGE 0 V I_{OS} TEST SEE NOTE 14 FORCED V_{OUT} = 0 VOLTS

FIGURE 9. Test circuit for static tests for device types 01, 02, 03, and 04 – Continued.

- 1. Heavy current paths ($I \ge 0.05$ A) are indicated by bold lines.
- 2. Kelvin connections must be used for all output current and voltage measurements. For device types 03 and 04, output voltage measurements should be made at the case. For device type 03 only. If output voltage measurements are not made at the case but instead at the output lead, an error will result in the measurement due to internal lead resistance. The amount of error depends on the magnitude of the load current and the distance from the case to where the output voltage measurement is taken on the output pin.
- The output offset voltage shall be adjusted to zero with the device under test (DUT) removed.
 The operational amplifier stabilization networks may vary with test adapter construction.
 Alternate drive circuits for the 2N6294 may be used to develop the proper load current and input voltage pulses.
- 4. Relay switch positions are defined in table III.
- 5. Load currents of 5 mA may be established via the load resistors R_1 and R_2 . All other load currents shall be established via the pulse load circuits. Resistors R_1 and R_2 shall have a tolerance \leq 0.1 % for device types 01 and 02.
- 6. The pulse generator for the pulse load circuit shall have the following characteristics:
 - a. Pulse amplitude = -10 ($|I_L|$ V_O / ($R_1 + R_2$)) volts (referenced to -5 volts).
 - b. Pulse width = 1.0 ms (unless otherwise stated).
 - c. Duty cycle = 2% (maximum).
- 7. Load currents shall be determined by the voltage measured across the 1 Ω resistor. Measurements shall be made 0.5 ms after the start of the pulse.
- 8. V_{IN} (LOW) and V_{IN} (HIGH) per table III herein.
- 9. $V_{RLINE} = V_B V_A$.
- 10. The output voltage is sampled at specified intervals. Strobe pulse width is 100 μs maximum.
- 11. |IL| (minimum) and |IL| (maximum) per table III herein.
- 12. $V_{RLOAD} = V_D V_C$.
- 13. $V_{RTH} = V_D V_E$.
- 14. $l_{OS} = (l_{I})$ amps.
- 15. For device types 01 and 02, t = 10.5 ms. For device types 03 and 04, t = 20.5 ms.
- 16. For static test V_{RLOAD} 1, I_L = 500 mA, device type 03 only the following may apply. If output voltage measurements are taken from the output lead and not the case, the maximum limit shall be allowed to increase by 5 mV to account for the error due to internal lead resistance.

FIGURE 9. Test circuit for static tests for device types 01, 02, 03, and 04 - Continued.

Device table						
Device type	05	06				
RL	0.416 Ω	0.25 Ω				

FIGURE 10. Test circuit for static tests for device types 05 and 06.

LINE REGULATION WAVEFORMS

LOAD REGULATION WAVEFORMS

FIGURE 10. Test circuit for static tests for device types 05 and 06 - Continued.

WAVEFORMS FOR VOLTAGE START-UP, OUTPUT SHORT CIRCUIT CURRENT, AND OUTPUT VOLTAGE RECOVERY - V S1 = 0 VOLTS V_{S1} SEE TABLE III - V S1 = VIN/IO V F2 = 15 VOLTS V_{F2} V_{F2} = 0 VOLTS 10.0 ms 5.0 ms SEE NOTE 15 0.5 ms-0.1 ms STROBE — SEE NOTE 10 **⊸**10 ms→ 25 ms-V_{RECOVERY} -V_{START} V OUT = NOMINAL SEE TABLE III OUTPUT VOLTAGE 0 V -I_{OS} TEST SEE NOTE 14 FORCED V_{OUT} =0 VOLTS

FIGURE 10. Test circuit for static tests for device types 05 and 06 - Continued.

- 1. Heavy current paths ($I \ge 0.1$ A) are indicated by bold lines.
- 2. Kelvin connections must be used for all output current and voltage measurements. For device types 05 and 06, output voltage measurements shall be made at the case.
- 3. The output offset voltage shall be adjusted to zero with the device under test (DUT) removed. The operational amplifier stabilization networks may vary with test adapter construction. Alternate drive circuits for the 2N6282 may be used to develop the proper load current and input voltage pulses. These circuits shall require the approval of the qualifying activity.
- 4. Relay switch positions are defined in table III.
- 5. Load currents of 5 mA may be established via the 249 Ω load resistor. All other load currents shall be established via the pulse load circuit.
- 6. The pulse generator for the pulse load circuit shall have the following characteristics:
 - a. Pulse amplitude = ($|I_L|$.005) volts. (referenced to -7 volts)
 - b. Pulse width = 1.0 ms (unless otherwise stated).
 - c. Duty cycle = 2% (maximum).
 - d. Rise time = $30 \mu s$ (minimum).
- 7. Load currents shall be determined by the voltage measured across the 0.25 Ω resistor. Measurements shall be made 0.5 ms after the start of the pulse.
- 8. V_{IN} (LOW) and V_{IN} (HIGH) per table III herein.
- 9. $V_{RLINE} = V_B V_A$.
- 10. The output voltage is sampled at specified intervals. Strobe pulse width is 100 μs maximum.
- 11. |IL| (minimum) and |IL| (maximum) per table III herein.
- 12. $V_{RLOAD} = V_D V_C$.
- 13. $V_{RTH} = V_D V_F$.
- 14. $los = (l_L)$ amps.
- 15. Output short circuit current measurements at t = 0.1, t = 0.5, and t = 5.0, are to be made on device type 06 only.

Device table								
Device types	01	02	03	04	05	06		
V _{IN}	10 V	10 V	6.25 V	6.25 V	6.25 V	6.25 V		
RL	40.2 Ω	14.3 Ω	10 Ω	2.5 Ω	2.5 Ω	2.5 Ω		
Ci	0.33 μF	0.33 μF	1.0 μF	1.0 μF	1.0 μF	1.0 μF		
CL	0.1 μF	0.1 μF	1.0 μF	1.0 μF	1.0 μF	1.0 μF		

- 1. $e_i = 1$ Vrms at f = 2400 Hz (measured at the input terminals of the DUT). Ripple rejection = 20 log (e_{irms} / e_{orms}).
- 2. The control pin connection is required for device types 01 and 02 only.
- 3. The input 50 Ω resistor and R_L shall be type RER 70 or equivalent.
- 4. The meter for e_i and e_o shall have a minimum bandwidth from 10 Hz to 10 kHz for devices 01 05 and 300 Hz to 10 kHz for device type 06 shall measure true rms voltages.

FIGURE 11. Ripple rejection test circuit.

Device table								
Device type	01	02	03	04	05	06		
VIN	10 V	10 V	6.25 V	6.25 V	6.25 V	6.25 V		
RL	100 Ω	50 Ω	25 Ω	12.5 Ω	12.5 Ω	12.5 Ω		
Ci	0.33 μF	0.33 μF	1.0 μF	1.0 μF	1.0 μF	1.0 μF		
CL	0.1 μF	0.1 μF	1.0 μF	1.0 μF	1.0 μF	1.0 μF		

- 1. The meter for measuring e_{orms} shall have a minimum bandwidth from 10 Hz to 10 kHz and shall measure true rms voltages.
- 2. $V_{NO} = e_{orms}$
- 3. The control pin connection is required for device types 01 and 02 only.
- 4. R_L shall be type RER 70 or equivalent.

FIGURE 12. Noise test circuit.

			Device tak	ole			
Device type	01	02	03	04	05	06	Notes
V _{IN}	10 V	10 V	6.25 V	6.25 V	6.25 V	6.25 V	1
ΔV_{IN}	3.0 V	3.0 V	3.0 V	3.0 V	3.0 V	3.0 V	1
RL	1.25 kΩ	1.25 kΩ	120 Ω	120 Ω	120 Ω	120 Ω	
t _{THL} = t _{TLH}	5.0 μs	5.0 μs	5.0 μs	5.0 μs	5.0 μs	5.0 μs	1
CL	0.1 μF	0.1 μF	1.0 μF	1.0 μF	1.0 μF	1.0 μF	

NOTES:

- 1. Measured at device input.
- 2. Pulse width $t_{p1} = 25 \mu s$; duty cycle = 3% (maximum).
- 3. Oscilloscope bandwidth = 5 MHz to 15 MHz.
- 4. The control pin connection is required for device types 01 and 02 only.
- 5. The input 25 Ω resistor and R_L shall be type RER 70 or equivalent.

FIGURE 13. Line transient response test circuit.

		[Device table			
Device type	01	02	03	04	05	06
R ₁	0	0	249 Ω	249 Ω	249 Ω	249 Ω
R ₂	1.0 kΩ	1.0 kΩ	0	0	0	0
ΙL	-50 mA	-100 mA	-50 mA	-100 mA	-100 mA	-100 mA
ΔΙL	-200 mA	-400 mA	-200 mA	-400 mA	-400 mA	-400 mA
VI	-0.45 V	-0.95 V	-0.45 V	-0.95 V	-0.95 V	-0.95 V
ΔVI	-2.0 V	-4.0 V	-2.0 V	-4.0 V	-4.0 V	-4.0 V
Ci	0.33 μF	0.33 μF	1.0 μF	1.0 μF	1.0 μF	1.0 μF
CL	0.1 μF	0.1 μF	1.0 μF	1.0 μF	1.0 μF	1.0 μF

FIGURE 14. Load transient response test circuit.

NOTES:

- 1. Heavy current paths ($I \ge 1.0 \text{ A}$) are indicated by bold lines.
- 2. Kelvin connections must be used for all output current and voltage measurements.
- 3. The operational amplifier stabilization networks may vary with test adapter construction. Alternate drive circuits for the 2N6294 may be used to develop the proper load current and input voltage pulses.
- The pulse generator for the pulse load circuit shall have the following characteristics. (See device table III.)
 - a. Voltage level $(V_1) = -10[|I_L| (V_{OUT}/(R_1 + R_2))]$ volts. (Referenced to -5 volts).
 - b. Pulse width $(t_{D2}) = 25 \mu s$.
 - c. Duty cycle = 3% (maximum).
 - d. $t_{THL} = t_{TLH} = 1.0 \mu s$ for device types 01 and 02.
 - e. $t_{THL} = t_{TLH} = 5.0 \mu s$ for device types 03, 04, 05, and 06.
 - f. Difference voltage level $(\Delta V_I) = 10 (I_L)$ volts.
- 5. a. $\Delta V_{OUT} = 500 \text{ mV}$ maximum for device type 01.
 - b. $\Delta V_{OUT} = 1,000 \text{ mV}$ maximum for device type 02.
 - c. $\Delta V_{OUT} = 120$ mV maximum for device types 03, 04, 05, and 06. (These values guarantee the specified limits for load transient response.)
- 6. The oscilloscope shall have a bandwidth between 5 and 15 MHz.
- 7. Resistors R1 and R2 shall be type RER 70 or equivalent.

FIGURE 14. Load transient response test circuit - Continued.

TABLE III. Group A inspection for all device type 01.

Subgroup	Symbol	Test no.	Test cor	nditions		figure 9 Applied ts) (Hi -			ial)	Relays energized		easuren ense lir		Equation	Notes	Lin	nits	Unit
			V _{IN} (volts)	IL (mA)	1-2	4-5	6-11	7-2	8-2		Pins	Value	Units			Min	Max	
1	Vout1	1	8	-5	8					None	9-11	E ₁	V	Vout1 = E1		4.75	5.25	V
	V _{OUT2}	2	8	-500	8	-4.95				66	"	E ₂	66	$V_{OUT2} = E_2$		"	"	"
T _A =	Vout3	3	30	-5	30					66	"	E ₃	"	Vout3 = E3		"	"	"
+25°C	V _{OUT4}	4	30	-50	30	-0.45				"	"	E ₄	**	$V_{OUT4} = E_4$		"	"	"
	V _{RLINE1}	5	8	-50	8	-0.45				"	"	E ₅	"	$V_{RLINE1} = E_5 - E_4$	See	-150	150	mV
	V _{RLINE2}	6	8	-350	8	-3.45				"	"	E ₆	"		figure 9			"
	V _{RLINE2}	7	25	-350	25	-3.45				"	"	E ₇	**	$V_{RLINE2} = E_6 - E_7$	waveforms	-50	50	"
	V _{RLOAD1}	8	10	-5	10					"	"	E ₈	**		See			"
	V _{RLOAD1}	9	10	-500	10	-4.95				66	"	E ₉	66	$V_{RLOAD1} = E_8 - E_9$	figure 9	-100	100	"
	VRLOAD2	10								"			"	$V_{RLOAD2} = E_3 - E_4$	waveforms	-150	150	"
	VRTH	11	15	-500	15	-4.95				ss	9-11	E ₁₀	u	VRTH = E ₁₀	See figure 9 waveforms t = 10.5 ms	-50	50	u
	I _{SCD1}	12	10	-5	10					"	12-13	E ₁₁	"	I _{SCD1} = E ₁₁ / 2000		-7.0	-0.5	mA
	I _{SCD2}	13	30	-5	30					"	"	E ₁₂	"	I _{SCD2} = E ₁₂ / 2000		-8.0	-0.5	"
	ΔISCD (LINE)	14	8	-5	8					и	"	E ₁₃	66	$\Delta I_{SCD} = E_{13} - E_{12} / 2000$ (LINE)		-1.0	1.0	"
	ΔI _{SCD} (LOAD)	15	10	-500	10	-4.95				"	"	E ₁₄	"	$\Delta I_{SCD} = E_{11} - E_{14} / 2000$ (LOAD)		-0.5	0.5	"
	los ₁	16	10		15			-1.0	0	K4,K5	10-5	E ₁₅	"	IOS1 = E ₁₅	See figure 9	-2.00	-0.50	Α
	V _{OUT5} (RECOV)	17	10		15			-1.0	15	K4,K5	9-11	E ₁₆	"	V _{OUT5} = E ₁₆	waveforms	4.75	5.25	V
	l _{OS2}	18	30		30				0	K5	10-5	E ₁₇	"	$I_{OS2} = E_{17}$		-1.00	-0.01	Α
	V _{OUT6} (RECOV)	19	30		30				15	K5	9-11	E ₁₈	"	V _{OUT6} = E ₁₈		4.75	5.25	V
	ICTL	20	10	-350	10	-3.45				K1,K2	12-13	E ₁₉	"	I _{CTL} = E19 / 33200		-5.00	-0.01	μΑ
	VSTART	21	8	-500	15			-0.8		K4	9-11	E ₂₀	66	V _{OUT} = E ₂₀	See figure 9 waveforms	4.75	5.25	V
	V _{OUT7}	22	38	-500	38	-4.95				None	"	E ₂₁	"	V _{OUT7} = E ₂₁	R1 = 4.99 kΩ ±0.1%	28.5	31.5	V
2	V _{OUT1}	23	8	-5	8					None	9-11	E ₂₂	٧	$V_{OUT1} = E_{22}$		4.75	5.25	V
	V _{OUT2}	24	8	-500	8	-4.95				"	"	E ₂₃	66	$V_{OUT2} = E_{23}$		"	"	"
T _A =	Vout3	25	30	-5	30					"	"	E ₂₄	"	$V_{OUT3} = E_{24}$		"	"	"
+125°C	V _{OUT4}	26	30	-50	30	-0.45				-		E ₂₅		V _{OUT4} = E ₂₅				"
	V _{RLINE1}	27	8	-50	8	-0.45				"	"	E ₂₆	"	$V_{RLINE1} = E_{26} - E_{25}$	See	-150	150	mV
	V _{RLINE2}	28	8	-350	8	-3.45				"	"	E ₂₇	"		figure 9			
	V _{RLINE2}	29	25	-350	25	-3.45				"	"	E ₂₈	"	V _{RLINE2} = E ₂₇ – E ₂₈	waveforms	-50	50	"
	V _R LOAD1	30	10	-5 -5	10					"	"	E ₂₉	"		See			
	V _R LOAD1	31	10	-500	10	-4.95				"		E ₃₀	"	$V_{RLOAD1} = E_{29} - E_{30}$	figure 9	-100	100	
	V _{RLOAD2}	32												$V_{RLOAD2} = E_{24} - E_{25}$	waveforms	-150	150	
	I _{SCD1}	33	10	-5	10					"	12-13	E ₃₁		$I_{SCD1} = E_{31} / 2000$		-7.0	-0.5	mA "
	I _{SCD2}	34	30	-5	30						12-13	E ₃₂		$I_{SCD2} = E_{32} / 2000$	l	-8.0	-0.5	

TABLE III. Group A inspection for all device type 01 – Continued.

Subgroup	Symbol	Test no.	Test cor	nditions		figure 9 Applied				Relays energized		easurem sense line	-	Equation	Notes	Lim	its	Unit
			V _{IN} (volts)	IL (mA)	1-2	ts) (Hi – 4-5	6-11		8-2	-	Pins	Value	Units			Min	Max	
2	ΔISCD (LINE)	35	8	-5	8					None	12-13	E ₃₃	V	Δ I _{SCD} = E ₃₃ – E ₃₂ / 2000 (LINE)		-1.0	1.0	mA
T _A = +125°C	ΔI _{SCD} (LOAD)	36	10	-500	10	-4.95				"	12-13	E ₃₄	"	$\Delta I_{SCD} = E_{31} - E_{34} / 2000$ (LOAD)		-0.5	0.5	"
	los ₁	37	10		15			-1.0	0	K4,K5	10-5	E ₃₅	"	I _{OS1} = E ₃₅	See figure 9	-2.00	-0.50	Α
	V _{OUT5} (RECOV)	38	10		15			-1.0	15	K4,K5	9-11	E ₃₆	"	V _{OUT5} = E ₃₆	waveforms	4.75	5.25	V
	los ₂	39	30		30				0	K5	10-5	E ₃₇	"	$I_{OS2} = E_{37}$		-1.00	-0.01	Α
	V _{OUT6} (RECOV)	40	30		30				15	K5	9-11	E ₃₈	u	V _{OUT6} = E ₃₈		4.75	5.25	V
	ICTL	41	10	-350	10	-3.45				K1,K2	12-13	E ₃₉	"	I _{CTL} = E39 / 33200		-8.00	-0.01	μΑ
	VSTART	42	8	-500	15			-0.8		K4	9-11	E ₄₀	44	V _{OUT} = E ₄₀	See figure 9 waveforms	4.75	5.25	V
	Vout7	43	38	-500	38	-4.95				None	"	E41	í.	Vout7 = E41	R1 = 4.99 kΩ ±0.1%	28.5	31.5	V
T _A = +150°C	VOUT8	44	10	-5	10					íí	"	E42	"	V _{OUT8} = E ₄₂		4.70	5.30	íí.
3	Vout1	45	8	-5	8					None	9-11	E43	V	VOUT1 = E43		4.75	5.25	V
	V _{OUT2}	46	8	-500	8	-4.95				"	"	E44	"	$V_{OUT2} = E_{44}$		"	"	"
$T_A =$	V _{OUT3}	47	30	-5	30					"	"	E ₄₅	"	V _{OUT3} = E ₄₅		"	"	"
-55°C	V _{OUT4}	48	30	-50	30	-0.45				"	"	E ₄₆	"	V _{OUT4} = E ₄₆		"	"	"
	V _{RLINE1}	49	8	-50	8	-0.45				"	"	E ₄₇	"	V _{RLINE1} = E ₄₇ – E ₄₆	See	-150	150	mV
	V _{RLINE2}	50	8	-350	8	-3.45				"	44	E ₄₈	"		figure 9			"
	V _{RLINE2}	51	25	-350	25	-3.45				"	**	E ₄₉	"	VDLINES - E40 - E40	waveforms	-50	50	"
		52	10	-5	10					ű	u	E ₅₀	"	V _{RLINE2} = E ₄₈ - E ₄₉	See			"
	V _R LOAD1	53	10	-500	10	-4.95				"	"		"	V	figure 9	-100	100	"
	V _R LOAD1	54								"		E ₅₁	"	$V_{RLOAD1} = E_{50} - E_{51}$	waveforms	-150	150	"
	VRLOAD2	55	10	-5	10					"	12-13		"	VRLOAD2 = E45 - E46	wavelonns	-7.0	-0.5	mA
	ISCD1		-		-					"	12-13	E ₅₂	"	I _{SCD1} = E ₅₂ / 2000				mA "
	I _{SCD2}	56	30	-5	30						10.10	E ₅₃		I _{SCD2} = E ₅₃ / 2000		-8.0	-0.5	
	ΔI _{SCD} (LINE)	57	8	-5	8					None	12-13	E ₅₄	V	$\Delta I_{SCD} = E_{54} - E_{53} / 2000$ (LINE)		-1.0	1.0	mA
	ΔI _{SCD} (LOAD)	58	10	-500	10	-4.95				"	"	E ₅₅	"	$\Delta I_{SCD} = E_{52} - E_{55} / 2000$ (LOAD)		-0.5	0.5	"
	I _{OS1}	59	10		15			-1.0	0	K4,K5	10-5	E ₅₆	"	I _{OS1} = E ₅₆	See figure 9	-2.00	-0.50	Α
	V _{OUT5} (RECOV)	60	10		15			-1.0	15	K4,K5	9-11	E ₅₇	u	V _{OUT5} = E ₅₇	waveforms	4.75	5.25	V
	los2	61	30		30				0	K5	10-5	E ₅₈	"	I _{OS2} = E ₅₈		-1.00	-0.01	Α
	V _{OUT6} (RECOV)	62	30		30				15	K5	9-11	E ₅₉	u	V _{OUT6} = E ₅₉		4.75	5.25	V
	ICTL	63	10	-350	10	-3.45				K1,K2	12-13	E ₆₀	"	I _{CTL} = E60 / 33200		-8.00	-0.01	μΑ
	VSTART	64	8	-500	15			-0.8		K4	9-11	E ₆₁	44	V _{OUT} = E ₆₁	See figure 9 waveforms	4.75	5.25	V
	V _{OUT7}	65	38	-500	38	-4.95				None	ű	E ₆₂	"	V _{OUT7} = E ₆₂	R1 = 4.99 kΩ ±0.1%	28.5	31.5	V

MIL-M-38510/117C

TABLE III. Group A inspection for all device type 01 – Continued.

Subgroup	Symbol	Test no.	Test cond	litions	_	asureme nse lines		Equation	Notes	Lim	its	Unit
			Input voltage	Load current	Symbol	Value	Units			Min	Max	
4	ΔV _{IN} /	66	V _{IN} = 10 V	I _L = -125 mA	e _{orms}	E ₆₃	Vrms	$\Delta V_{IN} / \Delta V_{OUT} = -20 \log E_{63}$	See figure 11	45		dB
T _A = +25°C	ΔV_{OUT}		e _i = 1.0 Vrms at 2400 Hz									
7	VNO	67	V _{IN} = 10 V	I _L = -50 mA	eorms	E ₆₄	Vrms	V _{NO} = E ₆₄	See figure 12		125	μVrms
T _A =	ΔV _{OUT} /	68	V _{IN} = 10 V	I _L = -5 mA	Vout	E ₆₅	V	$\Delta V_{OUT} / \Delta V_{IN} = E_{65} / 3$	See figure 13		30	mV/V
+25°C	ΔV_{IN}		$\Delta V_{IN} = 3.0 \text{ V}$									
	ΔV _{OUT} /	69	V _{IN} = 10 V	I _L = -50 mA	Vout	E ₆₆	V	$\Delta V_{OUT} / \Delta I_L = E_{66} / 200$	See figure 14		2.5	mV/mA
	ΔlL			$\Delta I_L = -200 \text{ mA}$								

TABLE III. Group A inspection for all device type 02.

Subgroup	Symbol	Test no.	Test cor	nditions		figure 9 Applied				Relays energized		easurer ense lir		Equation	Notes	Lin	nits	Unit
			V _{IN} (volts)	IL (mA)	1-2	lts) (Hi – 4-5	6-11	7-2	8-2		Pins	Value	Units			Min	Max	
1	V _{OUT1}	1	8	-5	8					None	9-11	E ₁	V	V _{OUT1} = E ₁		4.75	5.25	V
	VOUT2	2	8	-1000	8	-9.95				"	44	E ₂	"	V _{OUT2} = E ₂		"	"	"
T _A =	V _{OUT3}	3	30	-5	30					"	"	E ₃	66	V _{OUT3} = E ₃		"	"	"
+25°C	V _{OUT4}	4	30	-100	30	-0.95				"	"	E ₄	66	$V_{OUT4} = E_4$		"	"	"
	V _{RLINE1}	5	8	-100	8	-0.95				"	"	E ₅	66	V _{RLINE1} = E ₅ – E ₄	See	-150	150	mV
	V _{RLINE2}	6	8	-500	8	-4.95				"	"	E ₆	66		figure 9			"
	V _{RLINE2}	7	25	-500	25	-4.95				"	"	E ₇	66	$V_{RLINE2} = E_6 - E_7$	waveforms	-50	50	"
	V _R LOAD1	8	10	-5	10					"	"	E ₈	66		See			66
	VRLOAD1	9	10	-1000	10	-9.95				"	44	E ₉	"	VRLOAD1 = E8 - E9	figure 9	-100	100	"
	V _{RLOAD2}	10								"			66	$V_{RLOAD2} = E_3 - E_4$	waveforms	-150	150	"
	V _{RTH}	11	15	-1000	15	-9.95				"	9-11	E ₁₀	66	V _{RTH} = E ₁₀	See figure 9 waveforms	-50	50	££
	I _{SCD1}	12	10	-5	10					"	12-13	E ₁₁	66	I _{SCD1} = E ₁₁ / 2000		-7.0	-0.5	mA
	I _{SCD2}	13	30	-5	30					"	66	E ₁₂	66	$I_{SCD2} = E_{12} / 2000$		-8.0	-0.5	"
	ΔI _{SCD} (LINE)	14	8	-5	8					"	"	E ₁₃	ee	$\Delta I_{SCD} = E_{13} - E_{12} / 2000$ (LINE)		-1.0	1.0	"
	ΔI _{SCD} (LOAD)	15	10	-1000	10	-9.95				"	"	E ₁₄	66	$\Delta I_{SCD} = E_{11} - E_{14} / 2000$ (LOAD)		-0.5	0.5	и
	los ₁	16	10		15			-1.0	0	K4,K5	10-5	E ₁₅	"	I _{OS1} = E ₁₅	See figure 9	-4.00	-1.00	Α
	V _{OUT5} (RECOV)	17	10		15			-1.0	15	K4,K5	9-11	E ₁₆	66	V _{OUT5} = E ₁₆	waveforms	4.75	5.25	V
	los ₂	18	30		30			-0	0	K5	10-5	E ₁₇	"	I _{OS2} = E ₁₇		-2.00	-0.02	Α
	V _{OUT6} (RECOV)	19	30		30			-0	15	K5	9-11	E ₁₈	"	V _{OUT6} = E ₁₈		4.75	5.25	V
	ICTL	20	10	-500	10	-4.95				K1,K2	12-13	E ₁₉	66	I _{CTL} = E19 / 33200		-5.00	-0.01	μА
	VSTART	21	8	-1000	15			-0.8		K4	9-11	E ₂₀	66	V _{OUT} = E ₂₀	See figure 9 waveforms	4.75	5.25	V
	V _{OUT7}	22	38	-1000	38					None	"	E ₂₁	££	V _{OUT7} = E ₂₁	R1 = 4.99 kΩ ±0.1%	28.5	31.5	V
2	Vout1	23	8	-5	8					None	9-11	E ₂₂	V	V _{OUT1} = E ₂₂		4.75	5.25	V
	V _{OUT2}	24	8	-1000	8	-9.95				"	"	E ₂₃	66	$V_{OUT2} = E_{23}$		"	"	"
$T_A =$	V _{OUT3}	25	30	-5	30					"	66	E ₂₄	66	$V_{OUT3} = E_{24}$		"	"	"
+125°C	V _{OUT4}	26	30	-100	30	-0.95				"	66	E ₂₅	66	$V_{OUT4} = E_{25}$		"	"	"
	V _{RLINE1}	27	8	-100	8	-0.95				"	"	E ₂₆	"	$V_{RLINE1} = E_{26} - E_{25}$	See	-150	150	mV
	V _{RLINE2}	28	8	-500	8	-4.95				"	"	E ₂₇	"		figure 9			"
	VRLINE2	29	25	-500	25	-4.95				"	"	E ₂₈	"	V _{RLINE2} = E ₂₇ – E ₂₈	waveforms	-50	50	"
	V _{RLOAD1}	30	10	-5	10					"	"	E ₂₉	"		See			
	V _R LOAD1	31	10	-1000	10	-9.95				"		E ₃₀	"	$V_{RLOAD1} = E_{29} - E_{30}$	figure 9	-100	100	
	VRLOAD2	32											16	VRLOAD2 = E24 - E25	waveforms	-150	150	<u> </u>
	ISCD1	33	10	-5	10					"	12-13	E ₃₁		ISCD1 = E ₃₁ / 2000		-7.0	-0.5	mA "
	I _{SCD2}	34	30	-5	30						12-13	E ₃₂		$I_{SCD2} = E_{32} / 2000$		-8.0	-0.5	

TABLE III. Group A inspection for all device type 02 – Continued.

Subgroup	Symbol	Test no.	Test cor	nditions		figure 9 Applied ts) (Hi -	test vo		ial)	Relays energized		easurem sense line		Equation	Notes	Lim	its	Unit
			V _{IN} (volts)	IL (mA)	1-2	4-5	6-11	7-2	8-2	-	Pins	Value	Units			Min	Max	
2	ΔI _{SCD} (LINE)	35	8	-5	8					None	12-13	E ₃₃	V	$\Delta I_{SCD} = E_{33} - E_{32} / 2000$ (LINE)		-1.0	1.0	mA
T _A = +125°C	ΔI _{SCD} (LOAD)	36	10	-1000	10	-9.95				"	"	E ₃₄	"	$\Delta I_{SCD} = E_{31} - E_{34} / 2000$ (LOAD)		-0.5	0.5	"
	l _{OS1}	37	10		15			1.0	0	K4,K5	10-5	E ₃₅	"	I _{OS1} = E ₃₅	See figure 9	-4.00	-1.00	Α
	V _{OUT5} (RECOV)	38	10		15			1.0	15	K4,K5	9-11	E ₃₆	44	V _{OUT5} = E ₃₆	waveforms	4.75	5.25	V
	los2	39	30		30			-0	0	K5	10-5	E ₃₇	"	I _{OS2} = E ₃₇		-2.00	-0.02	Α
	V _{OUT6} (RECOV)	40	30		30			-0	15	K5	9-11	E38	"	V _{OUT6} = E ₃₈		4.75	5.25	V
	ICTL	41	10	-500	10	-4.95				K1,K2	12-13	E ₃₉	"	I _{CTL} = E39 / 33200		-8.00	-0.01	μА
	VSTART	42	8	-1000	15			-0.8		K4	9-11	E ₄₀	tt.	V _{OUT} = E ₄₀	See figure 9 waveforms	4.75	5.25	V
	V _{OUT7}	43	38	-1000	38					None	"	E ₄₁	"	V _{OUT7} = E ₄₁	R1 = 4.99 kΩ $\pm 0.1\%$	28.5	31.5	V
T _A = +150°C	V _{OUT8}	44	10	-5	10					"	66	E ₄₂	"	$V_{OUT8} = E_{42}$		4.70	5.30	"
3	V _{OUT1}	45	8	-5	8					None	9-11	E ₄₃	V	V _{OUT1} = E ₄₃		4.75	5.25	V
	V _{OUT2}	46	8	-1000	8	-9.95				"	"	E44	"	$V_{OUT2} = E_{44}$		"	"	"
T _A =	V _{OUT3}	47	30	-5	30					"	"	E ₄₅	"	V _{OUT3} = E ₄₅		"	"	"
-55°C	V _{OUT4}	48	30	-100	30	-0.95				"	**	E ₄₆	"	V _{OUT4} = E ₄₆		**	"	"
	V _{RLINE1}	49	8	-100	8	-0.95				"	"	E ₄₇	"	V _{RLINE1} = E ₄₇ – E ₄₆	See	-150	150	mV
	V _{RLINE2}	50	8	-500	8	-4.95				"	**	E ₄₈	"		figure 9			"
	V _{RLINE2}	51	25	-500	25	-4.95				"	**	E ₄₉	"	V _{RLINE2} = E ₄₈ - E ₄₉	waveforms	-50	50	"
	V _{RLOAD1}	52	10	-5	10					"	"	E ₅₀	"		See			"
	VRLOAD1	53	10	-1000	10	-9.95				"	"	E ₅₁	"	VRLOAD1 = E50 - E51	figure 9	-100	100	"
	VRLOAD1	54								"			"	V _{RLOAD2} = E ₄₅ – E ₄₆	waveforms	-150	150	"
	I _{SCD1}	55	10	-5	10					"	12-13	E ₅₂	"	I _{SCD1} = E ₅₂ / 2000		-7.0	-0.5	mA
	ISCD1	56	30	-5	30					"	"	E ₅₃	"	$I_{SCD2} = E_{53} / 2000$		-8.0	-0.5	"
	ΔISCD (LINE)	57	8	-5	8					None	12-13	E ₅₄	V	AISCD = E ₅₄ - E ₅₃ / 2000 (LINE)		-1.0	1.0	mA
	∆I _{SCD} (LOAD)	58	10	-1000	10	-9.95				и	"	E ₅₅	"	Δ I _{SCD} = E ₅₂ – E ₅₅ / 2000 (LOAD)		-0.5	0.5	"
	los ₁	59	10		15			-1.0	0	K4,K5	10-5	E ₅₆	"	I _{OS1} = E ₅₆	See figure 9	-4.00	-1.00	Α
	V _{OUT5} (RECOV)	60	10		15			-1.0	15	K4,K5	9-11	E ₅₇	"	V _{OUT5} = E ₅₇	waveforms	4.75	5.25	V
	los ₂	61	30		30				0	K5	10-5	E ₅₈	"	I _{OS2} = E ₅₈		-2.00	-0.02	Α
	Vout6 (RECOV)	62	30		30				15	K5	9-11	E ₅₉	u	VOUT6 = E59		4.75	5.25	V
	ICTL	63	10	-500	10	-4.95				K1,K2	12-13	E ₆₀	"	I _{CTL} = E60 / 33200		-8.00	-0.01	μΑ
	VSTART	64	8	-1000	15			-0.8		K4	9-11	E ₆₁	"	V _{OUT} = E ₆₁	See figure 9 waveforms	4.75	5.25	V
	V _{OUT7}	65	38	-1000	38					None	"	E ₆₂	**	V _{OUT7} = E ₆₂	R1 = 4.99 kΩ ±0.1%	28.5	31.5	V

MIL-M-38510/117C

TABLE III. Group A inspection for all device type 02 - Continued.

Subgroup	Symbol	Test no.	Test cond	ditions	_	asuremei nse lines		Equation	Notes	Lim	its	Unit
			Input voltage	Load current	Symbol	Value	Units			Min	Max	
4	ΔV _{IN} /	66	V _{IN} = 10 V	I _L = -350 mA	e _{orms}	E ₆₃	Vrms	$\Delta V_{IN} / \Delta V_{OUT} = -20 \log E_{63}$	See figure 11	45		dB
T _A = +25°C	ΔVουτ		e _i = 1.0 Vrms at 2400 Hz									
7	V _{NO}	67	V _{IN} = 10 V	I _L = -100 mA	e _{orms}	E ₆₄	Vrms	V _{NO} = E ₆₄	See figure 12		250	μVrms
T _A =	ΔV _{OUT} /	68	V _{IN} = 10 V	I _L = -5 mA	Vout	E ₆₅	V	$\Delta V_{OUT} / \Delta V_{IN} = E_{65} / 3$	See figure 13		30	mV/V
+25°C	ΔV_{IN}		$\Delta V_{IN} = 3.0 \text{ V}$									
	ΔV _{OUT} /	69	V _{IN} = 10 V	I _L = -100 mA	Vout	E ₆₆	V	Δ VOUT / Δ IL = E ₆₆ / 400	See figure 14		2.5	mV/mA
	Δ lL			$\Delta I_L = -400 \text{ mA}$								

TABLE III. Group A inspection for all device type 03.

Subgroup	Symbol	Test	Test cor	nditions	See	figure 9		roltages		Relays energized		easurem sense line		Equation	Notes	Lin	nits	Unit
					(vo	lts) (Hi	– Lo p	in potenti	al)	0.10.9.200	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
			V _{IN} (volts)	IL (mA)	1-2	4-5	6-11	7-2	8-2		Pins	Value	Units			Min	Max	
1	V _{OUT1}	1	4.25	-5	4.25	0				None	9-11	E ₁	V	VOUT1 = E1		1.20	1.30	V
	VOUT2	2	4.25	-500	4.25	-4.95				ı,	44	E ₂	"	V _{OUT2} = E ₂		"	"	"
T _A =	V _{OUT3}	3	41.25	-5	41.25	0				"	44	E ₃	66	V _{OUT3} = E ₃		"	"	"
+25°C	V _{OUT4}	4	41.25	-50	41.25	-0.45				"	"	E ₄	66	$V_{OUT4} = E_4$		"	"	"
	V _{RLINE}	5								"	"		66	V _{RLINE} = E ₁ – E ₃	See figure 9 waveforms	-9	9	mV
	V _{RLOAD1}	6	6.25	-5	6.25	0				"	"	E ₅	"		See			"
	VRLOAD1	7	6.25	-500	6.25	-4.95				ı,	44	E ₆	"	VRLOAD1 = E5 - E6	figure 9	-12	-12	"
	V _{RLOAD2}	8								"	44		66	$V_{RLOAD2} = E_3 - E_4$	waveforms	-12	12	"
	V _{RTH}	9	14.6	-500	14.6	-7.45				u	и	E ₇	cc.	V _{RTH} = E ₇	See figure 9 waveforms t = 20.5 ms	-12	12	"
	I _{ADJ}	10	4.25	-5	4.25	0				K2	12-13	E ₈	mV	I _{ADJ} = E ₈ / 2000		-100	-15	μΑ
	IADJ	11	41.25	-5	41.25	0				ı,	44	E ₉	"	I _{ADJ} = E ₉ / 2000		-100	-15	"
	Δl _{ADJ} (LINE)	12								"	u		"	$\Delta I_{ADJ} = (E_8 - E_9) / 2000$ (LINE)		-5	5	ii.
	Δl _{ADJ}	13	6.25	-5	6.25	0				"	"	E ₁₀	"	,				
	(LOAD)	14	6.25	-500	6.25	-4.95				"	u	E ₁₁	"	$\Delta I_{ADJ} = (E_{10} - E_{11}) / 2000$ (LOAD)		-5	5	"
	(LOAD)													,				
	I _{OS1}	15	4.25		10			-0.425	0	K4,K5	10-5	E ₁₂	V	$I_{OS1} = E_{12}$	See figure 9	-1.8	-0.5	A
	V _{OUT5} (RECOV)	16	4.25		10			-0.425	15	K4,K5	9-11	E ₁₃	"	$V_{OUT5} = E_{13}$ (RECOV)	waveforms	1.20	1.30	V .
	I _{OS2}	17	40		40				0	K5	10-5	E ₁₄	"	$I_{OS2} = E_{14}$		-0.5	-0.05	Α
	V _{OUT6} (RECOV)	18	40		40				15	K5	9-11	E ₁₅		$V_{OUT6} = E_{15}$ (RECOV)		1.20	1.30	V
	I _{Q1}	19	4.25		4.25	0	1.4			K3	12-13	E ₁₆	66	$I_{Q1} = E_{16} / 2000$		-3.0	-0.05	mA
	I _{Q2}	20	14.25		14.25	0	1.4			K3	12-13	E ₁₇	"	$I_{Q2} = E_{17} / 2000$		-3.0	-0.05	"
	I _{Q3}	21	41.25		41.25	0	1.4			K3	12-13	E ₁₈	"	$I_{Q3} = E_{18} / 2000$		-5.0	-0.2	"
	VSTART	22	4.25	-500	10	0		-0.425		K4	9-11	E ₁₉	66	V _{START} = E ₁₉	See figure 9 waveforms	1.20	1.30	V
2	V _{OUT1}	23	4.25	-5	4.25	0				None	9-11	E ₂₀	V	V _{OUT1} = E ₂₀		1.20	1.30	V
	V _{OUT2}	24	4.25	-500	4.25	-4.95				"	44	E ₂₁	"	$V_{OUT2} = E_{21}$		"	"	"
T _A =	V _{OUT3}	25	41.25	-5	41.25	0				"	"	E ₂₂	"	$V_{OUT3} = E_{22}$		44	"	"
+125°C	V _{OUT4}	26	41.25	-50	41.25	-0.45				"	"	E ₂₃	"	$V_{OUT4} = E_{23}$		"	"	"
	V _{RLINE1}	27								"	u		66	V _{RLINE} = E ₂₀ – E ₂₂	See figure 9 waveforms	-23	23	mV
	V _{RLOAD1}	28	6.25	-5	6.25	0				"	"	E ₂₄	"		See			u
	V _{RLOAD1}	29	6.25	-500	6.25	-4.95				"	44	E ₂₅	"	$V_{RLOAD1} = E_{24} - E_{25}$	figure 9	-12	12	"
	V _{RLOAD2}	30								"	"		"	$V_{RLOAD2} = E_{22} - E_{23}$		-12	12	"

TABLE III. Group A inspection for all device type 03 – Continued.

Subgroup	Symbol	Test			See	figure 9				Relays		leasurem		Equation	Notes	Lin	nits	Unit
		no.	Test cor	nditions	(vo			oltages in potenti	al)	energized	:	sense lin	es					
			V _{IN} (volts)	IL (mA)	1-2	4-5	6-11	7-2	8-2		Pins	Value	Units			Min	Max	
2	I _{ADJ}	31	4.25	-5	4.25	0				K2	12-13	E ₂₆	mV	$I_{ADJ} = E_{26} / 2000$		-100	-15	μА
	ladj	32	41.25	-5	41.25	0				ı,	"	E ₂₇	"	I _{ADJ} = E ₂₇ / 2000		-100	-15	44
T _A = +125°C	Δl _{ADJ} (LINE)	33								u	66		"	I _{ADJ} = (E ₂₆ – E ₂₇) / 2000 (LINE)		-5	5	"
	Δl _{ADJ} (LOAD)	34	6.25	-5	6.25	0				"	"	E ₂₈	"	I _{ADJ} = (E ₂₈ – E ₂₉) / 2000		-5	5	"
	∆l _{ADJ} (LOAD)	35	6.25	-500	6.25	-4.95				44	"	E ₂₉	"	(LOAD)				
	los ₁	36	4.25		10			0.425	0	K4,K5	10-5	E ₃₀	V	I _{OS1} = E ₃₀	See figure 9	-1.8	-0.5	Α
	VOUT5 (RECOV)	37	4.25		10			0.425	15	K4,K5	9-11	E ₃₁	66	V _{OUT5} = E ₃₁ (RECOV)	waveforms	1.20	1.30	V
	los ₂	38	40		40				0	K5	10-5	E ₃₂	"	I _{OS2} = E ₃₂		-0.5	-0.05	Α
	V _{OUT6} (RECOV)	39	40		40				15	K5	9-11	E ₃₃	"	V _{OUT6} = E ₃₃ (RECOV)		1.20	1.30	V
	lQ1	40	4.25		4.25	0	1.4			K3	12-13	E34	"	I _{Q1} = E ₃₄ / 2000		-3.0	-0.05	mA
	I _{Q2}	41	14.25		14.25	0	1.4			K3	12-13	E ₃₅	"	$I_{Q2} = E_{35} / 2000$		-3.0	-0.05	"
	I _{Q3}	42	41.25		41.25	0	1.4			K3	12-13	E ₃₆	"	$I_{Q3} = E_{36} / 2000$		-5.0	-0.2	44
	VSTART	43	4.25	-500	10	0		-0.425		K4	9-11	E ₃₇	"	V _{START} = E ₃₇	See figure 9 waveforms	1.20	1.30	V
T _A = +150°C	V _{OUT7}	44	6.25	-5	6.25	0				None	44	E ₃₈	66	V _{OUT7} = E ₃₈		1.20	1.30	V
3	V _{OUT1}	45	4.25	-5	4.25	0				None	9-11	E ₃₉	V	V _{OUT1} = E ₃₉		1.20	1.30	V
	Vout2	46	4.25	-500	4.25	-4.95				"	"	E ₄₀	"	VOUT2 = E ₄₀		"	"	"
T _A =	V _{OUT3}	47	41.25	-5	41.25	0				"	"	E ₄₁	66	V _{OUT3} = E ₄₁		"	"	**
-55°C	Vout4	48	41.25	-50	41.25	-0.45				"	"	E42	66	VOUT4 = E42		"	"	**
	VRLINE1	49								u	"		66	VRLINE = E39 - E41	See figure 9 waveforms	-23	23	mV
	V _{RLOAD1}	50	6.25	-5	6.25	0				"	"	E ₄₃	66		See			"
	VRLOAD1	51	6.25	-500	6.25	-4.95				"	"	E44	66	VRLOAD1 = E43 - E44	figure 9	-12	12	"
	V _{RLOAD2}	52								"	"		66	V _{RLOAD2} = E ₄₁ – E ₄₂		-12	12	"
	I _{ADJ}	53	4.25	-5	4.25	0				K2	12-13	E ₄₅	mV	$I_{ADJ} = E_{45} / 2000$		-100	-15	μА
	I _{ADJ}	54	41.25	-5	41.25	0				"	"	E46	"	I _{ADJ} = E ₄₆ / 2000		-100	-15	"
	Δl _{ADJ} (LINE)	55								"	66		"	ΔI _{ADJ} = (E ₄₅ – E ₄₆) / 2000 (LINE)		-5	5	"
	Δl _{ADJ} (LOAD)	56	6.25	-5	6.25	0				u	"	E ₄₇	"	ΔI _{ADJ} = (E ₄₇ – E ₄₈) / 2000		-5	5	"
	Δl _{ADJ} (LOAD)	57	6.25	-500	6.25	-4.95				"	66	E ₄₈	es	(LINE)				

TABLE III. Group A inspection for all device type 03 – Continued.

Subgroup	Symbol	Test no.	Test cor	nditions		figure (Applied	test vo	oltages n potentia	al)	Relays energized		easureme sense line		Equation	Notes	Lir	nits	Unit
			V _{IN} (volts)	IL (mA)	1-2	4-5	6-11	7-2	8-2		Pins	Value	Units			Min	Max	
3	l _{OS1}	58	4.25		10			-0.425	0	K4,K5	10-5	E ₄₉	V	I _{OS1} = E ₄₉	See figure	-1.8	-0.5	Α
T _A =	V _{OUT5} (RECOV)	59	4.25		10			-0.425	15	K4,K5	9-11	E ₅₀	"	V _{OUT5} = E ₅₀ (RECOV)	waveforms	1.20	1.30	V
-55°C	los ₂	60	40		40				0	K5	10-5	E ₅₁	"	I _{OS2} = E ₅₁		-0.5	-0.05	Α
	V _{OUT6} (RECOV)	61	40		40				15	K5	9-11	E ₅₂	"	V _{OUT6} = E ₅₂ (RECOV)		1.20	1.30	V
	I _{Q1}	62	4.25		4.25	0	1.4			K3	12-13	E ₅₃	44	$I_{Q1} = E_{53} / 2000$		-3.0	-0.05	mA
	I _{Q2}	63	14.25		14.25	0	1.4			K3	12-13	E ₅₄	44	$I_{Q2} = E_{54} / 2000$		-3.0	-0.05	ee .
	IQ3	64	41.25		41.25	0	1.4			K3	12-13	E ₅₅	"	I _{Q3} = E ₅₅ / 2000		-5.0	-0.2	££
	VSTART	65	4.25	-500	10	0		-0.425		K4	9-11	E ₅₆	44	V _{START} = E ₅₆	See figure	1.20	1.30	V
															waveforms			
	1													T	1	1		
Subgroup	Symbol	Test no.				Test co	ndition	s				easureme ense line		Equation	Notes	Lir	nits	Unit
											Symbol	Value	Units			Min	Max	
4		66			voltage				d curr			-	Vrms		See figure	65		dB
7	ΔVIN /	00		VIN =	6.25 V			ıL =	-125	mA	eorms	E ₅₇	VIIIIS	$\Delta V_{IN} / \Delta V_{OUT} = -20 \log E_{57}$	11	00		ub.
T _A = +25°C	ΔVουτ				.0 Vrms 400 Hz													
7	VNO	67		VIN =	6.25 V			IL =	= -50 r	nA	eorms	E ₅₈	Vrms	V _{NO} = E ₅₈	See figure 12		120	μVrms
T _A =	ΔV _{OUT} /	68		VIN =	6.25 V			IL =	= -10 r	nA	Vout	E ₅₉	V	$\Delta V_{OUT} / \Delta V_{IN} = E_{59} / 3$	See figure 13		6	mV/V
+25°C	ΔV _{IN}			ΔV _{IN} = 3.0 V											10			
	ΔV _{OUT} /	69		VIN =	6.25 V			IL =	= -50 r	nA	Vout	E ₆₀	V	$\Delta V_{OUT} / \Delta I_L = E_{60} / 200$	See figure 14		0.60	mV/mA
	ΔlL							Δ I L =	= -200	mA								

TABLE III. Group A inspection for all device type 04.

Subgroup	Symbol	Test	Test co	nditions	See	e figure 9		oltages		Relays energized		leasurem		Equation	Notes	Lin	nits	Unit
					(vo			in potenti	al)									
			V _{IN} (volts)	I _L (mA)	1-2	4-5	6-11	7-2	8-2		Pins	Value	Units			Min	Max	
1	V _{OUT1}	1	4.25	-5	4.25	0				None	9-11	E ₁	V	V _{OUT1} = E ₁		1.20	1.30	V
	VOUT2	2	4.25	-1500	4.25	-14.95				"	"	E ₂	66	VOUT2 = E2		"	"	"
T _A =	V _{OUT3}	3	41.25	-5	41.25	0				"	"	E ₃	44	V _{OUT3} = E ₃		**	"	"
+25°C	V _{OUT4}	4	41.25	-200	41.25	-1.95				ı,	"	E ₄	"	V _{OUT4} = E ₄		"	"	44
	V _{RLINE}	5								"	"		"	V _{RLINE} = E ₁ – E ₃	See figure 9 waveforms	-9	9	mV
	V _{RLOAD1}	6	6.25	-5	6.25	0				"	"	E ₅	"		See			**
	VRLOAD1	7	6.25	-1500	6.25	-14.95				"	"	E ₆	"	VRLOAD1 = E5 - E6	figure 9	-3.5	3.5	"
	V _{RLOAD2}	8								"	"		"	$V_{RLOAD2} = E_3 - E_4$	waveforms	-3.5	3.5	"
	V _{RTH}	9	14.6	-1500	14.6	-14.95				ű	и	E ₇	ű	V _{RTH} = E ₇	See figure 9 waveforms, t = 20.5 ms	-12	12	"
	I _{ADJ}	10	4.25	-5	4.25	0				K2	12-13	E ₈	mV	$I_{ADJ} = E_8 / 2000$		-100	-15	μΑ
	I _{ADJ}	11	41.25	-5	41.25	0				tt.	"	E ₉	££	I _{ADJ} = E ₉ / 2000		-100	-15	"
	Δl _{ADJ} (LINE)	12								"	ee			$\Delta I_{ADJ} = (E_8 - E_9) / 2000$ (LINE)		-5	5	"
	Δl _{ADJ}	13	6.25	-5	6.25	0				"	"	E ₁₀	££	(==)				
	(LOAD)	14	6.25	-1500	6.25	-14.95				"	"	E ₁₁	"	$\Delta I_{ADJ} = (E_{10} - E_{11}) / 2000$ (LOAD)		-5	5	"
	(LOAD)																	
	los ₁	15	4.25		10			-0.425	0	K4,K5	10-5	E ₁₂	٧	$I_{OS1} = E_{12}$	See figure 9	-3.5	-1.5	A
	V _{OUT5} (RECOV)	16	4.25		10			-0.425	15	K4,K5	9-11	E ₁₃		$V_{OUT5} = E_{13}$ (RECOV)	waveforms	1.20	1.30	V
	los ₂	17	40		40				0	K5	10-5	E ₁₄	25	Ios2 = E ₁₄		-1.00	-0.18	Α
	V _{OUT6} (RECOV)	18	40		40				15	K5	9-11	E ₁₅	66	$V_{OUT6} = E_{15}$ (RECOV)		1.20	1.30	V
	I _{Q1}	19	4.25		4.25	0	1.4			K3	12-13	E ₁₆	"	$I_{Q1} = E_{16} / 2000$		-3.0	-0.05	mA
	IQ2	20	14.25		14.25	0	1.4			K3	12-13	E ₁₇	"	$I_{Q2} = E_{17} / 2000$		-3.0	-0.05	"
	I _{Q3}	21	41.25		41.25	0	1.4			K3	12-13	E ₁₈	"	$I_{Q3} = E_{18} / 2000$		-5.0	-0.2	"
	VSTART	22	4.25	-1500	10	0	1	-0.425	-	K4	9-11	E ₁₉	"	VSTART = E ₁₉	See figure 9 waveforms	1.20	1.30	V
2	V _{OUT1}	23	4.25	-5	4.25	0				None	9-11	E ₂₀	V	V _{OUT1} = E ₂₀		1.20	1.30	V
	V _{OUT2}	24	4.25	-1500	4.25	-14.95				"	"	E ₂₁	"	$V_{OUT2} = E_{21}$		"	"	"
T _A =	V _{OUT3}	25	41.25	-5	41.25	0				"	"	E ₂₂	"	$V_{OUT3} = E_{22}$		"	"	"
+125°C	Vout4	26	41.25	-200	41.25	-1.95				"	"	E ₂₃	"	VouT4 = E23		"	"	"
	VRLINE1	27					-			"	66		66	VRLINE = E ₂₀ – E ₂₂	See figure 9 waveforms	-23	23	mV
	V _{RLOAD1}	28	6.25	-5	6.25	0				"	"	E ₂₄	££		See			"
	V _{RLOAD1}	29	6.25	-1500	6.25	-14.95				"	"	E ₂₅	66	$V_{RLOAD1} = E_{24} - E_{25}$	figure 9	-12	12	"
	V _{RLOAD2}	30								"	"		"	$V_{RLOAD2} = E_{22} - E_{23}$	waveforms	-12	12	"

TABLE III. Group A inspection for all device type 04 – Continued.

Subgroup	Symbol	Test			See	e figure 9				Relays		leasurem		Equation	Notes	Lin	nits	Unit
		no.	Test co	nditions	(vo			oltages in potenti	al)	energized	:	sense lin	es					
			V _{IN} (volts)	IL (mA)	1-2	4-5	6-11	7-2	8-2		Pins	Value	Units			Min	Max	
2	I _{ADJ}	31	4.25	-5	4.25	0				K2	12-13	E ₂₆	mV	$I_{ADJ} = E_{26} / 2000$		-100	-15	μА
	ladj	32	41.25	-5	41.25	0				"	"	E ₂₇	"	I _{ADJ} = E ₂₇ / 2000		-100	-15	44
T _A = +125°C	Δl _{ADJ} (LINE)	33								u	66		"	$\Delta I_{ADJ} = (E_{26} - E_{27}) / 2000$ (LINE)		-5	5	"
	ΔI _{ADJ} (LOAD)	34	6.25	-5	6.25	0				"	"	E ₂₈	"	$\Delta I_{ADJ} = (E_{28} - E_{29}) / 2000$		-5	5	"
	Δl _{ADJ} (LOAD)	35	6.25	-1500	6.25	-14.95				"	44	E ₂₉	**	(LOAD)				
	los ₁	36	4.25		10			-0.425	0	K4,K5	10-5	E ₃₀	V	I _{OS1} = E ₃₀	See figure 9	-3.5	-1.5	Α
	V _{OUT5} (RECOV)	37	4.25		10			-0.425	15	K4,K5	9-11	E ₃₁	66	V _{OUT5} = E ₃₁ (RECOV)	waveforms	1.20	1.30	V
	los2	38	40		40				0	K5	10-5	E ₃₂	"	IOS2 = E32		-1.00	-0.18	Α
	V _{OUT6} (RECOV)	39	40		40				15	K5	9-11	E ₃₃	"	V _{OUT6} = E ₃₃ (RECOV)		1.20	1.30	V
	lQ1	40	4.25		4.25	0	1.4			K3	12-13	E34	"	I _{Q1} = E ₃₄ / 2000		-3.0	-0.05	mA
	I _{Q2}	41	14.25		14.25	0	1.4			K3	12-13	E ₃₅	"	$I_{Q2} = E_{35} / 2000$		-3.0	-0.05	"
	I _{Q3}	42	41.25		41.25	0	1.4			K3	12-13	E ₃₆	"	$I_{Q3} = E_{36} / 2000$		-5.0	-0.2	"
	V _{START}	43	4.25	-1500	10	0		-0.425		K4	9-11	E ₃₇	66	V _{START} = E ₃₇	See figure 9 waveforms	1.20	1.30	V
T _A = +150°C	V _{OUT7}	44	6.25	-5	6.25	0				None	44	E ₃₈	66	V _{OUT7} = E ₃₈		1.20	1.30	V
3	V _{OUT1}	45	4.25	-5	4.25	0				None	9-11	E ₃₉	V	V _{OUT1} = E ₃₉		1.20	1.30	V
	Vout2	46	4.25	-1500	4.25	-14.95				"	"	E ₄₀	"	VOUT2 = E40		"	"	"
T _A =	V _{OUT3}	47	41.25	-5	41.25	0				"	"	E ₄₁	66	V _{OUT3} = E ₄₁		"	"	**
-55°C	Vout4	48	41.25	-200	41.25	-1.95				"	"	E42	66	VOUT4 = E42		"	"	**
	VRLINE1	49								"	"		66	VRLINE = E39 - E41	See figure 9 waveforms	-23	23	mV
	V _{RLOAD1}	50	6.25	-5	6.25	0				"	"	E ₄₃	"		See			44
	VRLOAD1	51	6.25	-1500	6.25	-14.95				"	"	E44	66	VRLOAD1 = E43 - E44	figure 9	-12	12	"
	V _{RLOAD2}	52								"	"		66	V _{RLOAD2} = E ₄₁ – E ₄₂	waveforms	-12	12	"
	I _{ADJ}	53	4.25	-5	4.25	0				K2	12-13	E ₄₅	mV	I _{ADJ} = E ₄₅ / 2000		-100	-15	μА
	I _{ADJ}	54	41.25	-5	41.25	0				"	"	E ₄₆	"	$I_{ADJ} = E_{46} / 2000$		-100	-15	"
	Δl _{ADJ} (LINE)	55								"	ee		66	$\Delta I_{ADJ} = (E_{45} - E_{46}) / 2000$ (LINE)		-5	5	"
	Δl _{ADJ} (LOAD)	56	6.25	-5	6.25	0				"	66	E ₄₇	"	ΔI _{ADJ} = (E ₄₇ – E ₄₈) / 2000		-5	5	"
	Δl _{ADJ} (LOAD)	57	6.25	-1500	6.25	-14.95				"	"	E48	66	(LOAD)				

0.30 mV/mA

TABLE III. Group A inspection for all device type 04 – Continued.

Subgroup	Symbol	Test			See	figure 9)			Relays	M	easurem	ent	Equation	Notes	Lin	nits	Unit
		no.	Test cor	nditions				oltages n potentia	al)	energized		sense lim	its	·				
			V _{IN} (volts)	IL (mA)	1-2	4-5	6-11	7-2	8-2		Pins	Value	Units			Min	Max	
3	los ₁	58	4.25	`	10			-0.425	0	K4,K5	10-5	E ₄₉	V	I _{OS1} = E ₄₉	See figure 9	-3.5	-1.5	Α
T _A =	V _{OUT5} (RECOV)	59	4.25		10			-0.425	15	K4,K5	9-11	E ₅₀	u	V _{OUT5} = E ₅₀ (RECOV)	waveforms	1.20	1.30	V
-55°C	los ₂	60	40		40				0	K5	10-5	E ₅₁	"	I _{OS2} = E ₅₁		-1.00	-0.18	Α
	VOUT6 (RECOV)	61	40		40				15	K5	9-11	E ₅₂	u	V _{OUT6} = E ₅₂ (RECOV)		1.20	1.30	V
	I _{Q1}	62	4.25		4.25	0	1.4			K3	12-13	E ₅₃	"	$I_{Q1} = E_{53} / 2000$		-3.0	-0.05	mA
	IQ2	63	14.25		14.25	0	1.4			K3	12-13	E ₅₄	"	$I_{Q2} = E_{54} / 2000$		-3.0	-0.05	"
	I _{Q3}	64	41.25		41.25	0	1.4			K3	12-13	E ₅₅	"	$I_{Q3} = E_{55} / 2000$		-5.0	-0.2	"
	VSTART	65	4.25	-1500	10	0		-0.425		K4	9-11	E ₅₆	"	V _{START} = E ₅₆	See figure 9 waveforms	1.20	1.30	V
Subgroup	Symbol	Test no.				Test co	ndition	ıs				easureme ense line		Equation	Notes	Lin	nits	Unit
				Input	voltage			Loa	ad curr	ent	Symbol	Value	Units			Min	Max	
4	ΔV _{IN} /	66		VIN =	6.25 V			IL =	-500 r	mA	eorms	E ₅₇	Vrms	$\Delta V_{IN} / \Delta V_{OUT} = -20 \log E_{57}$	See figure 11	65		dB
T _A = +25°C	ΔV _{OUT}				.0 Vrms 100 Hz													
7	V_{NO}	67		V _{IN} =	6.25 V			IL =	-100 r	mA	e _{orms}	E ₅₈	Vrms	V _{NO} = E ₅₈	See figure 12		120	μVrms
T _A = +25°C	ΔV _{OUT} /	68			6.25 V = 3.0 V			IL =	= -10 m	nΑ	V _{OUT}	E ₅₉	V	$\Delta V_{OUT} / \Delta V_{IN} = E_{59} / 3$	See figure 13		6	mV/V
ı		00	+											+	0 6 44		0.00	

Vout

E₆₀

I_L = -100 mA

 $\Delta I_L = -400 \text{ mA}$

 $\Delta V_{OUT} / \Delta I_L = E_{60} / 200$

See figure 14

69

ΔV_{OUT} /

 ΔI_L

V_{IN} = 6.25 V

TABLE III. Group A inspection for all device type 05.

Subgroup	Symbol	Test no.	Test cor	nditions		figure 1	test v	oltages	al)	Relays energized		easurem sense line		Equation	Notes	Lin	nits	Unit
			V _{IN} (volts)	IL (mA)	1-2	4-5	6-11	7-2	8-2		Pins	Value	Units			Min	Max	
1	V _{OUT1}	1	4.25	-5	15	0		-0.425		None	9-11	E ₁	V	VOUT1 = E1		1.20	1.30	V
	VOUT2	2	4.25	-3000	15	-2.995		-0.425		"	44	E ₂	66	VOUT2 = E2		"	"	"
T _A =	V _{OUT3}	3	36.25	-5	42.5	0		-3.625		"	"	E ₃	66	V _{OUT3} = E ₃		"	"	"
+25°C	V _{OUT4}	4	36.25	-150	42.5	-0.145		-3.625		"	"	E ₄	66	V _{OUT4} = E ₄		"	"	"
	V _{RLINE}	5								ii	"		66	$V_{RLINE} = E_1 - E_3$	See figure 10 waveforms	-4	4	mV
	V _{RLOAD1}	6	6.25	-5	15	0		-0.625		"	"	E ₅	66		See			"
	VRLOAD1	7	6.25	-3000	15	-2.995		-0.625		"	44	E ₆	66	VRLOAD1 = E5 - E6	figure 10	-3.5	3.5	"
	V _{RLOAD2}	8								"	"		66	$V_{RLOAD2} = E_3 - E_4$	waveforms	-3.5	3.5	
	V _{RTH}	9	11.25	-1000	25	-0.995		-1.125		"	и	E ₇	cc .	V _{RTH} = E ₇	See figure 10 waveforms, t = 20.5 ms	-5	5	ee
	I _{ADJ}	10	4.25	-5	15	0		-0.425		K2	12-13	E ₈	mV	$I_{ADJ} = E_8 / 2000$		-100	-15	μΑ
	I _{ADJ}	11	36.25	-5	42.5	0		-3.625		"	"	E ₉	"	I _{ADJ} = E ₉ / 2000		-100	-15	"
	Δl _{ADJ} (LINE)	12								"	u		66	$\Delta I_{ADJ} = (E_8 - E_9) / 2000$ (LINE)		-5	5	"
	Δl _{ADJ}	13	6.25	-5	15	0		-0.625		"	"	E ₁₀	"					
	(LOAD)	14	6.25	-3000	15	-2.995		-0.625		u	"	E ₁₁	66	$\Delta I_{ADJ} = (E_{10} - E_{11}) / 2000$ (LOAD)		-5	5	ű
	(LOAD)											-11		,				
	l _{OS1}	15	4.25		15			-0.425	0	K4,K5	10-5	E ₁₂	V	I _{OS1} = 4E ₁₂	See figure 10	-5.2	-3.0	Α
	V _{OUT5} (RECOV)	16	4.25		15			-0.425	15	K4,K5	9-11	E ₁₃	66	V _{OUT5} = E ₁₃ (RECOV)	waveforms	1.20	1.30	V
	los ₂	17	35		42.5			-3.5	0	K5	10-5	E ₁₄	**	IOS2 = 4E ₁₄		-2.00	-0.15	Α
	V _{OUT6} (RECOV)	18	35		42.5			-3.5	15	K5	9-11	E ₁₅	66	V _{OUT6} = E ₁₅ (RECOV)		1.20	1.30	V
	I _{Q1}	19	4.25		15	0	1.4	-0.425		K3	12-13	E ₁₆	66	$I_{Q1} = E_{16} / 2000$		-3.0	-0.05	mA
	I _{Q2}	20	14.25		25	0	1.4	-1.425		K3	12-13	E ₁₇	66	$I_{Q2} = E_{17} / 2000$		-3.0	-0.05	"
	I _{Q3}	21	36.25		42.5	0	1.4	-3.625		K3	12-13	E ₁₈	66	$I_{Q3} = E_{18} / 2000$		-5.0	-0.2	"
	VSTART	22	4.25	-3000	15	0		-0.425		K4	9-11	E ₁₉	"	VSTART = E19	See figure 10 waveforms	1.20	1.30	V
2	V _{OUT1}	23	4.25	-5	15	0		-0.425		None	9-11	E ₂₀	V	$V_{OUT1} = E_{20}$		1.20	1.30	V
	V _{OUT2}	24	4.25	-3000	15	-2.995		-0.425		"	"	E ₂₁	"	$V_{OUT2} = E_{21}$		"	"	"
$T_A =$	V _{OUT3}	25	36.25	-5	42.5	0		-3.625		"	44	E ₂₂	66	$V_{OUT3} = E_{22}$		"	"	"
+125°C	Vout4	26	36.25	-150	42.5	-0.145		-3.625		66	"	E ₂₃	66	Vout4 = E23		"	í,	"
	VRLINE1	27								"	"		"	V _{RLINE} = E ₂₀ - E ₂₂	See figure 10 waveforms	-20	20	mV
	V _{RLOAD1}	28	6.25	-5	15	0		-0.625		"	"	E ₂₄	66		See			"
	V _{RLOAD1}	29	6.25	-3000	15	-2.995		-0.625		"	"	E ₂₅	**	$V_{RLOAD1} = E_{24} - E_{25}$	figure 10	-12	12	"
	V _{RLOAD2}	30								"	"		"	$V_{RLOAD2} = E_{22} - E_{23}$	waveforms	-12	12	tt.

TABLE III. Group A inspection for all device type 05 – Continued.

Subgroup	Symbol	Test			See	figure 1				Relays		leasurem	ent	Equation	Notes	Lin	nits	Unit
		no.	Test cor	nditions	(vo			oltages in potenti	al)	energized	:	sense lin	es					
			V _{IN} (volts)	IL (mA)	1-2	4-5	6-11	7-2	8-2		Pins	Value	Units			Min	Max	
2	I _{ADJ}	31	4.25	-5	15	0		-0.425		K2	12-13	E ₂₆	mV	$I_{ADJ} = E_{26} / 2000$		-100	-15	μΑ
	ladj	32	36.25	-5	42.5	0		-3.625		"	"	E ₂₇	"	$I_{ADJ} = E_{27} / 2000$		-100	-15	44
T _A = +125°C	Δl _{ADJ} (LINE)	33								u	66		"	$\Delta I_{ADJ} = (E_{26} - E_{27}) / 2000$ (LINE)		-5	5	"
	ΔI _{ADJ} (LOAD)	34	6.25	-5	15	0		-0.625		u	"	E ₂₈	"	$\Delta I_{ADJ} = (E_{28} - E_{29}) / 2000$		-5	5	"
	Δl _{ADJ} (LOAD)	35	6.25	-3000	15	-2.995		-0.625		ű	44	E ₂₉	66	(LOAD)				
	los ₁	36	4.25		15			-0.425	0	K4,K5	10-5	E ₃₀	V	I _{OS1} = 4E ₃₀	See figure 10	-5.2	-3.0	Α
	VOUT5 (RECOV)	37	4.25		15			-0.425	15	K4,K5	9-11	E ₃₁	"	V _{OUT5} = E ₃₁ (RECOV)	waveforms	1.20	1.30	V
	los ₂	38	35		42.5			-3.5	0	K5	10-5	E ₃₂	"	I _{OS2} = 4E ₃₂		-2.0	-0.15	Α
	V _{OUT6} (RECOV)	39	35		42.5			-3.5	15	K5	9-11	E ₃₃	"	V _{OUT6} = E ₃₃ (RECOV)		1.20	1.30	V
	lQ1	40	4.25		15	0	1.4	-0.425		K3	12-13	E34	"	I _{Q1} = E ₃₄ / 2000		-3.0	-0.05	mA
	I _{Q2}	41	14.25		25	0	1.4	-1.425		K3	12-13	E ₃₅	"	$I_{Q2} = E_{35} / 2000$		-3.0	-0.05	"
	I _{Q3}	42	36.25		42.5	0	1.4	-3.625		K3	12-13	E ₃₆	"	$I_{Q3} = E_{36} / 2000$		-5.0	-0.2	"
	V _{START}	43	4.25	-3000	15	0		-0.425		K4	9-11	E ₃₇	66	V _{START} = E ₃₇	See figure 10 waveforms	1.20	1.30	V
T _A = +150°C	V _{OUT7}	44	6.25	-5	15	0		-0.625		None	66	E ₃₈	66	V _{OUT7} = E ₃₈		1.20	1.30	V
3	V _{OUT1}	45	4.25	-5	15	0		-0.425		None	9-11	E ₃₉	V	V _{OUT1} = E ₃₉		1.20	1.30	V
	Vout2	46	4.25	-3000	15	-2.995		-0.425		"	"	E ₄₀	"	VOUT2 = E40		"	"	"
T _A =	V _{OUT3}	47	36.25	-5	42.5	0		-3.625		"	"	E ₄₁	66	V _{OUT3} = E ₄₁		"	"	"
-55°C	Vout4	48	36.25	-150	42.5	-0.145		-3.625		"	"	E42	66	VOUT4 = E42		44	"	"
	VRLINE1	49								"	"		"	VRLINE = E39 - E41	See figure 10 waveforms	-20	20	mV
	V _{RLOAD1}	50	6.25	-5	15	0		-0.625		"	"	E ₄₃	66		See			44
	VRLOAD1	51	6.25	-3000	15	-2.995		-0.625		"	"	E44	"	VRLOAD1 = E43 - E44	figure 10	-12	12	"
	V _{RLOAD2}	52									-			V _{RLOAD2} = E ₄₁ – E ₄₂	waveforms	-12	12	"
	I _{ADJ}	53	4.25	-5	15	0		-0.425		K2	12-13	E ₄₅	mV	I _{ADJ} = E ₄₅ / 2000		-100	-15	μА
	I _{ADJ}	54	36.25	-5	42.5	0		-3.625		"	"	E ₄₆	"	$I_{ADJ} = E_{46} / 2000$		-100	-15	"
	Δl _{ADJ} (LINE)	55								и	ee		66	$\Delta I_{ADJ} = (E_{45} - E_{46}) / 2000$ (LINE)		-5	5	"
	Δl _{ADJ} (LOAD)	56	6.25	-5	15	0		-0.625		"	ee	E ₄₇	66	$\Delta I_{ADJ} = (E_{47} - E_{48}) / 2000$		-5	5	"
	Δl _{ADJ} (LOAD)	57	6.25	-3000	15	-2.995		-0.625		"	66	E ₄₈	"	(LOAD)				"

See figure 14

 $\Delta V_{OUT} / \Delta I_L = E_{60} / 200$

0.30

mV/mA

TABLE III. Group A inspection for all device type 05 – Continued.

Subgroup	Symbol	Test no.	Test cor	nditions			test v	oltages in potentia	al)	Relays energized		leasurem sense lim		Equation	Notes	Lin	nits	Unit
			V _{IN} (volts)	IL (mA)	1-2	4-5	6-11	7-2	8-2		Pins	Value	Units			Min	Max	
3	los ₁	58	4.25	`	15			-0.425	0	K4,K5	10-5	E ₄₉	V	I _{OS1} = 4E ₄₉	See figure 10	-5.2	-3.0	Α
T _A =	V _{OUT5} (RECOV)	59	4.25		15			-0.425	15	K4,K5	9-11	E ₅₀	"	V _{OUT5} = E ₅₀ (RECOV)	waveforms	1.20	1.30	V
-55°C	los ₂	60	35		42.5			-3.5	0	K5	10-5	E ₅₁	"	I _{OS2} = 4E ₅₁		-2.0	-0.15	Α
	VOUT6 (RECOV)	61	35		42.5			-3.5	15	K5	9-11	E ₅₂	u	V _{OUT6} = E ₅₂ (RECOV)		1.20	1.30	V
	I _{Q1}	62	4.25		15	0	1.4	-0.425		K3	12-13	E ₅₃	££	I _{Q1} = E ₅₃ / 2000		-3.0	-0.05	mA
	IQ2	63	14.25		25	0	1.4	-1.425		K3	12-13	E ₅₄	"	$I_{Q2} = E_{54} / 2000$		-3.0	-0.05	66
	I _{Q3}	64	36.25		42.5	0	1.4	-3.625		K3	12-13	E ₅₅	"	$I_{Q3} = E_{55} / 2000$		-5.0	-0.2	66
	V _{START}	65	4.25	-3000		0		-0.425		K4	9-11	E ₅₆	"	V _{START} = E ₅₆	See figure 10 waveforms	1.20	1.30	V
	1	1																
Subgroup	Symbol	Test no.				Test co	ndition	ns				easurem sense line		Equation	Notes	Lir	nits	Unit
				Input	voltage			Loa	ıd curr	ent	Symbo	Value	Units			Min	Max	
4	ΔV _{IN} /	66		VIN =	6.25 V			IL =	-500 ı	mA	eorms	E ₅₇	Vrms	$\Delta V_{IN} / \Delta V_{OUT} = -20 \log E_{57}$	See figure 11	65		dB
T _A = +25°C	ΔVουτ				.0 Vrms 100 Hz													
7	V_{NO}	67		V _{IN} =	6.25 V	.25 V I _L = -100 m/			mA	e _{orms}	E ₅₈	Vrms	V _{NO} = E ₅₈	See figure 12		120	μVrms	
T _A = +25°C	ΔV _{OUT} /	68			6.25 V = 3.0 V			IL =	= -10 n	nA	Vout	E ₅₉	V	$\Delta V_{OUT} / \Delta V_{IN} = E_{59} / 3$	See figure 13		12	mV/V
		+	1		•							+		†				

E₆₀

 V_{OUT}

I_L = -100 mA

 $\Delta I_L = -400 \text{ mA}$

 ΔV_{OUT} /

 ΔI_L

V_{IN} = 6.25 V

TABLE III. Group A inspection for all device type 06.

Subgroup	Symbol	Test no.	Test co	nditions			test v	roltages	-1)	Relays energized		easurem sense line		Equation	Notes	Lin	nits	Unit
			V _{IN} (volts)	IL (mA)	1-2	4-5	– Lo p 6-11	in potenti 7-2	al) 8-2		Pins	Value	Units			Min	Max	
1	Vout1	1	4.25	-5	15	0		-0.425		None	9-11	E ₁	V	Vout1 = E1		1.19	1.29	V
	V _{OUT2}	2	4.25	-5000	15	-4.995		-0.425		"	"	E ₂	"	$V_{OUT2} = E_2$		"	"	"
T _A =	VOUT3	3	36.25	-5	42.5	0		-3.625		"	"	E ₃	"	VOUT3 = E3		"	"	"
+25°C	V _{OUT4}	4	36.25	-0.150	42.5	-0.145		-3.625		"	"	E ₄	"	V _{OUT4} = E ₄		"	"	"
	V _{OUT5}	5	6.25	-7000	15	-6.995		-0.625		"	"	E ₅		V _{OUT5} = E ₅		"	"	"
	V _{RLINE}	6								u	и		66	V _{RLINE} = E ₁ – E ₃	See figure 10 waveforms	-4	4	mV
	V _{RLOAD1}	7	6.25	-5	15	0		-0.625		"	"	E ₆	"		See			"
	VRLOAD1	8	6.25	-5000	15	-4.995		-0.625		"	"	E ₇	"	VRLOAD1 = E6 - E7	figure 10	-3.8	3.8	"
	V _{RLOAD2}	9								"	"		"	$V_{RLOAD2} = E_3 - E_4$	waveforms	-3.8	3.8	"
	V _{RTH}	10	11.25	-1000	25	-0.995		-1.125		и	и	E ₈	66	V _{RTH} = E ₈	See figure 10 waveforms t = 20.5 ms	-2	2	"
	I _{ADJ}	11	4.25	-5	15	0		-0.425		K2	12-13	E ₉	mV	I _{ADJ} = E ₉ / 2000		-100	-15	μΑ
	I _{ADJ}	12	36.25	-5	42.5	0		-3.625		"	u	E ₁₀	66	I _{ADJ} = E ₁₀ / 2000		-100	-15	"
	Δl _{ADJ} (LINE)	13								"	44		66	$\Delta I_{ADJ} = (E_9 - E_{10}) / 2000$ (LINE)		-5	5	"
	ΔI _{ADJ}	14	6.25	-5	15	0		-0.625		"	"	E ₁₁	"	(EIIVE)				
	(LOAD)	15	6.25	-5000	15	-4.995		-0.625		"	"	E ₁₂	"	$\Delta I_{ADJ} = (E_{11} - E_{12}) / 2000$ (LOAD)		-5	5	"
	(LOAD)											-12						
	los ₁	16	4.25		15			-0.425	0	K4,K5	10-5	E ₁₃	V	I _{OS1} = 4E ₁₃	t = 0.1 ms	-16.0	-7.0	Α
	los ₂	17	4.25		15			-0.425	0	K4,K5	10-5	E ₁₄	"	$I_{OS2} = 4E_{14}$	t = 0.5 ms	-16.0	-7.0	Α
	los3	18	4.25		15			-0.425	0	K4,K5	10-5	E ₁₅	"	I _{OS3} = 4E ₁₅	t = 5.0 ms	-15.0	-5.0	Α
	V _{OUT6} (RECOV)	19	4.25		15			-0.425	15	K4,K5	9-11	E ₁₆	22	V _{OUT6} = E ₁₆ (RECOV)		1.19	1.29	V
	los4	20	35		42.5			-3.5	0	K5	10-5	E ₁₇	"	IOS4 = 4E ₁₇	See	-3.00	-0.20	Α
	V _{OUT7}	21	35		42.5			-3.5	15	K5	9-11	E ₁₈	"	V _{OUT7} = E ₁₈	figure 10	1.19	1.29	V
	(RECOV)													(RECOV)	waveforms			
	IQ1	22	4.25		15	0	1.4	-0.425		K3	12-13	E ₁₉	**	I _{Q1} = E ₁₉ / 2000		-3.0	-0.05	mA
	IQ2	23	14.25		25	0	1.4	-1.425		K3	12-13	E ₂₀	"	$I_{Q2} = E_{20} / 2000$		-3.0	-0.05	"
	I _{Q3}	24	36.25		42.5	0	1.4	-3.625		K3	12-13	E ₂₁	"	$I_{Q3} = E_{21} / 2000$		-5.0	-0.2	"
	VSTART	25	4.25	-5000	15	0		-0.425		K4	9-11	E ₂₂	"	V _{START} = E ₂₂	See figure 10 waveforms	1.19	1.29	V
2	V _{OUT1}	26	4.25	-5	15	0		-0.425		None	9-11	E ₂₃	V	V _{OUT1} = E ₂₃		1.19	1.29	V
	Vout2	27	4.25	-5000	15	-4.995		-0.425		"	"	E ₂₄	"	V _{OUT2} = E ₂₄		44	"	"
$T_A =$	V _{OUT3}	28	36.25	-5	42.5	0		-3.625		"	"	E ₂₅	"	$V_{OUT3} = E_{25}$		"	"	"
+125°C	V _{OUT4}	29	36.25	-0.150	42.5	-0.145		-3.625		"	"	E ₂₆	"	V _{OUT4} = E ₂₆		"	"	"
	Vout5	30	6.25	-7000	15	-6.995		-0.625		"	"	E ₂₇	"	V _{OUT5} = E ₂₇		"	"	"
	V _{RLINE1}	31								"	u	E ₂₈	66	V _{RLINE} = E ₂₃ – E ₂₅	See figure 10 waveforms	-20	20	mV
	VRLOAD1	32	6.25	-5	15	0		-0.625		"	"	E ₂₉	"		See			"
	V _R LOAD1	33	6.25	-5000	15	-4.995		-0.625		"	"	E ₃₀	**	$V_{RLOAD1} = E_{29} - E_{30}$	figure 10	-8	8	"
	V _{RLOAD2}	34								44	"		"	$V_{RLOAD2} = E_{25} - E_{26}$	waveforms	-8	8	"

TABLE III. Group A inspection for all device type 06 – Continued.

Subgroup	Symbol	Test no.	Test cor	nditions			d test v	roltages		Relays energized		easurem sense line	-	Equation	Notes	Lin	nits	Unit
			V _{IN}	ΙL	1-2	1ts) (Hi 4-5	– Lo p 6-11	in potentia 7-2	al) 8-2		Pins	Value	Units			Min	Max	-
			(volts)	(mA)														<u> </u>
2	I _{ADJ}	35	4.25	-5	15	0		-0.425		K2	12-13	E ₃₁	mV	$I_{ADJ} = E_{31} / 2000$		-100	-15	μА
	IADJ	36	36.25	-5	42.5	0		-3.625		-	**	E ₃₂	"	$I_{ADJ} = E_{32} / 2000$		-100	-15	"
T _A = +125°C	ΔI _{ADJ} (LINE)	37								"	44		"	$\Delta I_{ADJ} = (E_{31} - E_{32}) / 2000$ (LINE)		-5	5	"
	ΔI _{ADJ} (LOAD)	38	6.25	-5	15	0		-0.625		"	"	E ₃₃	66	ΔI _{ADJ} = (E ₃₃ – E ₃₄) / 2000		-5	5	"
	Δl _{ADJ} (LOAD)	39	6.25	-5000	15	-4.995		-0.625		"	66	E ₃₄	"	(LOAD)				
	los ₁	40	4.25		15			-0.425	0	K4,K5	10-5	E ₃₅	V	I _{OS1} = 4E ₃₅	t = 0.1 ms	-16.0	-7.0	Α
	los ₂	41	4.25		15			-0.425	0	K4,K5	10-5	E ₃₆	V	IOS1 = 4E36	t = 0.5 ms	-16.0	-7.0	Α
		42	4.25		15			-0.425	0	K4,K5	10-5	E ₃₇	V	I _{OS2} = 4E ₃₆	t = 5.0 ms	-15.0	-5.0	Α
	I _{OS3} V _{OUT6} (RECOV)	43	4.25		15			-0.425	15	K4,K5	9-11	E ₃₈	"	V _{OUT6} = E ₃₈	0.0	1.19	1.29	V
	(RECOV)	44	35		42.5			-3.5	0	K5	10-5	E ₃₉	"	(RECOV) I _{OS4} = 4E ₃₉	t = 10.0 ms	-3.0	-0.20	Α
	Vout7	45	35		42.5			-3.5	15	K5	9-11	E ₄₀	66	Vout7 = E40	See figure 10	1.19	1.29	V
	(RECOV)	46	4.25		15	0	1.4	-0.425		K3	12-13	_	"	(RECOV)	waveforms	-3.0	-0.05	mA
	I _{Q1}	47	14.25		25	0	1.4	-1.425		K3	12-13	E ₄₁	"	$I_{Q1} = E_{41} / 2000$		-3.0	-0.05	"
	lQ2	48	36.25		42.5	0	1.4	-3.625		K3	12-13	E ₄₂	"	$I_{Q2} = E_{42} / 2000$		-5.0	-0.03	"
	I _{Q3}	49	4.25	-5000	15	0	1.7	-0.425		K4	9-11	E ₄₃	"	I _{Q3} = E ₄₃ / 2000	See figure 10	1.19	1.29	V
	V _{START}	43	4.25	-3000	13	U		-0.423		114	3-11	E ₄₄		V _{START} = E ₄₄	waveforms	1.13	1.23	v
T _A = +150°C	V _{OUT7}	50	6.25	-5	15	0		-0.625		None	"	E ₄₅		V _{OUT7} = E ₄₅		1.19	1.29	V
3	V _{OUT1}	51	4.25	-5	15	0		-0.425		None	9-11	E ₄₆	V	V _{OUT1} = E ₄₆		1.19	1.29	V
	VOUT2	52	4.25	-5000	15	-4.995		-0.425		"	"	E47	"	VOUT2 = E47		"	"	"
T _A =	V _{OUT3}	53	36.25	-5	42.5	0		-3.625		"	"	E ₄₈	"	V _{OUT3} = E ₄₈		"	"	"
-55°C	VOUT4	54	36.25	-0.150	42.5	-0.145		-3.625		"	"	E ₄₉	"	V _{OUT4} = E ₄₉		"	"	"
	VOUT5	55	6.25	-7000	15	-6.995		-0.625		"	"	E ₅₀	66	Vout5 = E50		"	"	"
	V _{RLINE1}	56								u	u		66	V _{RLINE} = E ₄₆ – E ₄₈	See figure 10 waveforms	-17	17	mV
	VRLOAD1	57	6.25	-5	15	0		-0.625		"	"	E ₅₁	"		See			"
	V _{RLOAD1}	58	6.25	-5000	15	-4.995		-0.625		"	"	E ₅₂	"	V _{RLOAD1} = E ₅₁ – E ₅₂	figure 10	-8	8	"
	V _{RLOAD2}	59								"	"		"	V _{RLOAD2} = E ₄₈ - E ₄₉	waveforms	-8	8	"
	IADJ	60	4.25	-5	15	0		-0.425		K2	12-13	E ₅₃	mV	I _{ADJ} = E ₅₃ / 2000		-100	-15	μΑ
	IADJ	61	36.25	-5	42.5	0		-3.625		"	"	E ₅₄	££	I _{ADJ} = E ₅₄ / 2000		-100	-15	"
	ΔI _{ADJ} (LINE)	62								"	u		66	ΔI _{ADJ} = (E ₅₃ – E ₅₄) / 2000 (LINE)		-5	5	"
	ΔI _{ADJ}	63	6.25	-5	15	0		-0.625		"	"	E ₅₅	"	()				
	(LOAD)	64	6.25	-5000	15	-4.995		-0.625		"	"	E ₅₆	ű	$\Delta I_{ADJ} = (E_{55} - E_{56}) / 2000$ (LOAD)		-5	5	"

TABLE III. Group A inspection for all device type 06 – Continued.

Subgroup	Symbol	Test no.	Test co	nditions			test v	oltages in potentia	al)	Relays energized		easurem sense lim		Equation	Notes	Lir	nits	Unit
			V _{IN} (volts)	IL (mA)	1-2	4-5	6-11		8-2		Pins	Value	Units			Min	Max	
3	los ₁	65	4.25	`	15			-0.425	0	K4,K5	10-5	E ₅₇	V	I _{OS1} = 4E ₅₇	t = 0.1 ms	-16.0	-7.0	Α
	los2	66	4.25		15			-0.425	0	K4,K5		E ₅₈	"	IOS2 = 4E58	t = 0.5 ms	-16.0	-7.0	Α
T _A =	los3	67	4.25		15			-0.425	0	K4,K5		E ₅₉	"	I _{OS3} = 4E ₅₉	t = 5.0 ms	-15.0	-5.0	Α
-55°C	V _{OUT6} (RECOV)	68	4.25		15			-0.425	15	K4,K5	9-11	E ₆₀	"	V _{OUT6} = E ₆₀ (RECOV)		1.19	1.29	V
	los4	69	35		42.5			-3.5	0	K5	10-5	E ₆₁	"	$I_{OS4} = 4E_{61}$	t = 10.0 ms	-3.0	-0.20	Α
	V _{OUT7} (RECOV)	70	35		42.5			-3.5	15	K5	9-11	E ₆₂	44	V _{OUT7} = E ₆₂ (RECOV)	See figure 10 waveforms	1.19	1.29	V
	I _{Q1}	71	4.25		15	0	1.4	-0.425		K3	12-13	E ₆₃	ii.	I _{Q1} = E ₆₃ / 2000		-3.0	-0.05	mA
	lQ2	72	14.25		25	0	1.4	-1.425		K3	12-13	E ₆₄	"	$I_{Q2} = E_{64} / 2000$		-3.0	-0.05	"
	I _{Q3}	73	36.25		42.5	0	1.4	-3.625		K3	12-13	E ₆₅	"	$I_{Q3} = E_{65} / 2000$		-5.0	-0.2	"
	VSTART	74	4.25	-5000	15	0		-0.425		K4	9-11	E ₆₆	"	V _{START} = E ₆₆	See figure 10 waveforms	1.19	1.29	V
Subgroup	Symbol	Test no.				Test co	nditior	ns				easurem sense line		Equation	Notes	Lir	nits	Unit
				Input	voltage			Loa	d curr	ent	Symbol	Value	Units	1		Min	Max	
4	ΔV _{IN} /	75		V _{IN} =	6.25 V			IL =	-500 r	mA	e _{orms}	E ₆₇	Vrms	$\Delta V_{IN} / \Delta V_{OUT} = -20 \log E_{67}$	See figure 11	65		dB
T _A = +25°C	ΔV _{OUT}			V_{IN} = 6.25 V I_{L} = e_i = 1.0 V_{TMS} at 2400 Hz														
7	V _{NO}	76		$V_{IN} = 6.25 \text{ V}$ $I_L = -10$			-100 r	mA	e _{orms}	E ₆₈	Vrms	V _{NO} = E ₆₈	See figure 12		120	μVrms		
T _A =	ΔV _{OUT} /	77		V _{IN} = 6.25 V I _L = -10				= -10 n	nA	Vout	E ₆₉	V	$\Delta V_{OUT} / \Delta V_{IN} = E_{69} / 3$	See figure 13		12	mV/V	
+25°C	ΔV_{IN}			ΔV _{IN} = 3.0 V														
	ΔV _{OUT} /	78		V _{IN} =	6.25 V			IL =	-100 r	mA	V _{OUT}	E ₇₀	V	$\Delta V_{OUT} / \Delta I_L = E_{70} / 200$	See figure 14		0.30	mV/mA
	Δ lL							Δ I L =	= -400	mA								

MIL-M-38510/117C

TABLE IV. Group C end point electrical parameters. $(T_A = +25^{\circ}C)$

Device type	Characteristic	Symbol	Delta limits 1/	Lin	nits	Units
				Min	Max	
01, 02	Output voltage	Vout <u>2</u> /	±50 mV	4.75	5.25	V
	Standby current drain	I _{SCD}	±20 %	-8.0	-0.5	mA
03, 04, 05	Output voltage	Vout <u>2</u> /	±10 mV	1.20	1.30	V
06	Output voltage	Vout <u>2</u> /	±10 mV	1.19	1.29	V
03, 04, 05, 06	Adjust pin current	I _{ADJ} <u>3</u> /	±10 μA	-100	-15	μА
03, 04	Line regulation	V _{RLINE}	±4 mV	-9	9	mV
05, 06	Line regulation	V _{RLINE}	±2 mV	-4	4	mV

- 1/ Delta limits apply to the measured value (see delta limit definition in MIL-PRF-38535).
- 2/ Delta limits apply to test number 3 for all device types.
- 3/ Delta limits apply to test number 11 for all device types 03, 04, 05 and test number 12 for device type 06.

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

MIL-M-38510/117C

6. NOTES

(This section contains information of a general or explanatory nature which may be helpful, but is not mandatory.)

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
- 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. Pin and compliance identifier, if applicable (see 1.2).
 - c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - j. Packaging requirements (see 5.1).
- 6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43218-3990.
- 6.4 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
- 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-STD-1331, and as follows:
 - 6.5.1 Line regulation. The change in output voltage for a specified change in input voltage (V_{RLINE}).
 - 6.5.2 Load regulation. The change in output voltage for a specified change in load current (V_{RLOAD}).
 - 6.5.3 Ripple rejection. The ratio of the peak to peak input ripple voltage to the peak to peak output ripple voltage $(\Delta V_{OUT} / \Delta V_{IN})$.

MIL-M-38510/117C

- 6.5.4 Output noise voltage. The rms output noise voltage with constant load and no input ripple (VNO).
- 6.5.5 Standby current drain. The supply current drawn by the regulator with no output load or with a 1 k ohm output load.
- 6.5.6 Minimum load current. The minimum load current is that current required to maintain regulation.
- 6.5.7 Input voltage range. The range of supply voltage over which the regulator will operate.
- 6.5.8 Output voltage range. The range of output voltage over which the regulator will operate.
- 6.5.9 Transient response. The closed-loop step function response of the regulator under small-signal conditions.
- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
- 6.7 <u>Substitutability</u>. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	78MG
02	78G
03	LM117H
04	LM117K
05	LM150K
06	LM138K

6.8 <u>Changes from previous issue</u>. Marginal notations are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.

Custodians:

Army - CR

Navy - EC

Air Force - 11

DLA - CC

Preparing activity:

DLA - CC

Project 5962-2005-027

Review activities:

Army - MI, SM

Navy - AS, CG, MC, SH, TD

Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at http://assist.daps.dla.mil.